
Lodz University of Technology

Faculty of Technical Physics, Information Technology
and Applied Mathematics

Institute of Information Technology

Dariusz Jędrzejczak, 173095

Optimizing Links,
a functional language that compiles to

JavaScript,
for computer games

Bachelor of Engineering Thesis
written under supervision of
dr inż. Jan Stolarek

Łódź 2015

Abstract

This thesis explores the subjects of web game programming in the functional
paradigm and programming language optimization. A few simple web games are
implemented in the the experimental functional programming language Links. Op-
timizations are introduced to the language to improve performance. A benchmark
application is implemented to quantify their effectiveness.

ii

Dedication

Rodzicom.

iii

iv

Acknowledgements

Sincere thank you for help, advice, support, patience and understanding to every-
body who was on this ride with me.

In particular: James Cheney, Sam Lindley, and Jan Stolarek.
Also my family, friends and girlfriend, all the gamedev and functional program-

ming communities of the Internet and everybody whom I forgot to mention.

v

vi

Contents

Contents vii

1 Introduction 1
1.1 Scope . 1
1.2 Choice of topic . 2
1.3 Existing solutions and literature . 2
1.4 The future of functional programming in game development 3
1.5 Challenges . 3
1.6 Thesis goals and contributions . 4

2 Tools and methods 5
2.1 Programming languages . 5

2.1.1 Links . 5
2.1.2 JavaScript . 7
2.1.3 OCaml . 7
2.1.4 Haskell . 8

2.2 Software . 8
2.3 Programming paradigms and methods 9

3 Background 11
3.1 Functional programming in game development 11

3.1.1 Potential advantages . 11
3.1.2 Issues and disadvantages . 13
3.1.3 Adoption of the paradigm 13
3.1.4 Examples . 14

3.2 JavaScript games and garbage collector 15
3.3 Links’ compiler . 15

3.3.1 The setTimeout function 15
3.3.2 Significant source files . 16

3.4 Links’ runtime system . 16
3.4.1 Concurrency in Links . 16
3.4.2 Passing messages to processes 17
3.4.3 Lists . 20
3.4.4 Equality . 20
3.4.5 Debugging . 21

vii

CONTENTS CONTENTS

4 Web game design and implementation 23
4.1 Implemented web games . 23

4.1.1 Benchmark . 27
4.2 Requirements and design . 28
4.3 Anatomy of a game . 30

4.3.1 Auxiliary functions . 31
4.3.2 Type definitions . 31
4.3.3 The main function . 32
4.3.4 Updating game state . 32
4.3.5 Restarting the game . 34
4.3.6 Main game loop . 35
4.3.7 Game logic . 37
4.3.8 Rendering . 39
4.3.9 Web page structure . 45

5 Optimizations and benchmarking 47
5.1 Initial notes . 47
5.2 The benchmark application . 47
5.3 The unoptimized version . 52
5.4 Basic optimizations . 53

5.4.1 Optimized _yield and _yieldCont 53
5.4.2 Faster setTimeout . 54
5.4.3 Increased _yieldGranularity 56
5.4.4 Turning off double buffering 57
5.4.5 First two optimizations combined 58
5.4.6 First three optimizations combined 59
5.4.7 First two optimizations without double buffering 60
5.4.8 Other simple optimizations 61
5.4.9 Debugging . 62
5.4.10 The garbage problem . 63

5.5 Advanced optimizations and profiling 65
5.5.1 Profiling . 65
5.5.2 Baseline frame rate for remaining optimizations 69
5.5.3 JavaScript optimizer . 70
5.5.4 Comparison with the native version 72
5.5.5 Execution time profiling . 75
5.5.6 Linked list type . 76
5.5.7 Linked list type with native take and drop 78
5.5.8 JavaScript linked lists . 82
5.5.9 JS lists with null . 84
5.5.10 Equality . 85
5.5.11 _yield . 88

5.6 Observations and summary . 94
5.7 Performance in games . 96

viii

CONTENTS CONTENTS

6 Summary and conclusions 101
6.1 Conclusions . 103
6.2 Future work . 104

Bibliography 105

Glossary 107

Acronyms 109

A Attached files 111
A.1 DVD . 111
A.2 Files used in optimizations and benchmarking 112

List of Figures 115

ix

CONTENTS CONTENTS

x

Chapter 1

Introduction

1.1 Scope
The topics discussed in this thesis are:

• The application of functional programming in game development and related
performance issues.

• Trends and predictions pertaining to the adoption of the functional paradigm
in game development.

• Web game development in JavaScript and HTML5 and related performance
considerations.

• Languages compiled to JavaScript.

In practice I combine these topics by using Links1 – an experimental functional
language compiled to JavaScript – to write several web games. In the process, I
benchmark the performance of the language and introduce optimizations to its
runtime system to improve it.

The kind of optimizations that I will be talking about are mostly at the level
of the programming language’s runtime system [2].

This thesis investigates the practical application of functional programming
languages and performance challenges that come with the choice of the functional
paradigm for developing computer games.

I examine performance by writing computer games of increasing complexity
and looking at the frame rate that can be achieved. I then introduce and test
the effectiveness of various optimizations to the language’s runtime system and
compiler. The goal is to achieve a satisfactory frame rate (ideally about 60 frames
per second) in studied cases.

My specialization is Computer Simulation and Games Technology and I look at
the problem from a game developer’s standpoint, but the conclusions of this thesis
may apply to any performance-intensive applications of functional programming
languages.

1http://groups.inf.ed.ac.uk/links/

1

http://groups.inf.ed.ac.uk/links/

CHAPTER 1. INTRODUCTION

1.2 Choice of topic

I picked this topic, because I see big potential in functional languages and I pre-
dict that the languages used in video game industry will evolve towards being
more functional as they incorporate more and more elements characteristic of this
paradigm. I also think that it is worth to invest time and resources into working
with a language that compiles to JavaScript – and also with JavaScript – as this
area is rapidly developing and has a promising future.

I was interested in the functional paradigm, design and implementation of pro-
gramming languages and obviously game development for a long time, so doing
this project was a good opportunity to combine together and learn more about
these topics.

I intend to explore the subjects of this thesis further and consider the choices I
made a good starting point. An experimental and self-contained language like Links
allowed me to observe closely the process of creating a programming language.

1.3 Existing solutions and literature

There are many languages that compile to JavaScript2 and new ones are constantly
being created. Also compilers, translators and similar tools for existing languages
are being developed.

Some of the languages feature the idea of tierlessness (code in them is compiled
for both client and server) and are functional like Links – Opa3, Ur4, Haste5 (which
is a dialect of Haskell).

Elm6 is a functional language intended for web programming that supports
functional reactive programming (FRP), which is a paradigm that could potentially
be useful for developing games. The use of FRP in games has been explored in [8].

Other functional languages compiled to JavaScript include OCaml, Haskell,
LiveScript, Khepri, Roy, Agda, Idris.

Worth mention also are other interesting languages that compile or translate
to JavaScript: Haxe7 (which can also be compiled to many other languages, such
as ActionScript, C++, Java or Python), ClojureScript8 (from Clojure9), Coffee-
Script10 (JavaScript with prettier syntax) and a large family of languages derived
from it11.

2https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-
compile-to-js

3http://opalang.org/
4http://impredicative.com/ur/
5http://haste-lang.org/
6http://elm-lang.org/
7http://haxe.org/
8https://github.com/clojure/clojurescript
9http://clojure.org/

10http://coffeescript.org/
11https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-

compile-to-JS#coffeescript-family--friends

2

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
http://opalang.org/
http://impredicative.com/ur/
http://haste-lang.org/
http://elm-lang.org/
http://haxe.org/
https://github.com/clojure/clojurescript
http://clojure.org/
http://coffeescript.org/
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS#coffeescript-family--friends
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS#coffeescript-family--friends

CHAPTER 1. INTRODUCTION

It is also possible to generate JavaScript from existing languages, like C/C++
(via Emscripten12), Ruby (via Opal13) or PHP (via Uniter14).

Functional game programming is a developing field and the interest in creating
games with this paradigm is increasing15, but it is still a niche area. My sources
are mostly internet-based as there are not (yet) many books on topics I touch on
in this thesis, which are largely of experimental and research nature.

1.4 The future of functional programming in game
development

A few prominent figures in the video game industry have discussed the use of
functional programming in the field.

Tim Sweeney, the founder of Epic Games16, describes “the next mainstream
language” – a potential future programming language for game development with
functional features – in [18]. Co-founder of id Software17 John Carmack talks about
the benefits of functional programming in game development [5, 6, 7].

Many other game programmers and authors have expressed their interest and
in the subject as well [3, 11].

From these discussions and observations we can predict that mainstream pro-
gramming languages (not only those used in game development) will move towards
being more functional as more and more functional features will be gradually in-
troduced into them.

In the nearest future we should see a more widespread adoption of the functional
paradigm in existing languages [5] both in terms of style of writing code and in
language features as new versions of languages emerge.

1.5 Challenges

The work that I did in the scope of this thesis certainly exercised my engineering
skills. I had to put together a few broad theoretical subjects, some new to me. I had
to add whatever was missing to the knowledge acquired with formal and informal
learning in order to complete the goals I set for myself. Applying this knowledge
in practice and achieving tangible results was quite a task.

Approaching the subject of the use of functional programming in game creation
was particularly challenging as, compared to other game development-related top-
ics, there is not very much material (especially practical) available about this one.

12http://kripken.github.io/emscripten-site/
13http://opalrb.org/
14http://asmblah.github.io/uniter/
15See Chapter 3, 3.1.4 for examples of games written in functional languages.
16http://epicgames.com/
17http://www.idsoftware.com

3

http://kripken.github.io/emscripten-site/
http://opalrb.org/
http://asmblah.github.io/uniter/
http://epicgames.com/
http://www.idsoftware.com

CHAPTER 1. INTRODUCTION

Despite of some research being done in the area for a long time, it is still in an
early stage of development (see Chapter 3, 3.1.3).

A more concrete challenge was working with an experimental language (Links)
with almost no documentation available, which required me to reverse engineer
whatever I needed to know in order to implement optimizations.

1.6 Thesis goals and contributions
The goals of this thesis are as follows:

• Optimize the runtime system and possibly the compiler of the Links language
in order to achieve a satisfactory frame rate of at least 30 FPS in simple web
games.

• Decrease the performance gap between applications written in Links and
their native JavaScript versions.

• Create several computer games in Links using the functional paradigm; each
of greater complexity than the previous.

• Analyze and describe the process and challenges of game development using
the functional approach.

My contribution to game development in functional languages is exploring its
use and effectiveness – specifically in web-based games – by trying to assess and
improve performance of a functional language compiled to JavaScript.

In Chapter 3 I provide the necessary theoretical background, describing game
development in functional languages and the significant elements of the Links lan-
guage.

The practical side of this contribution is writing web games – described in
Chapter 4 – and improving the performance of the language in order to make
them playable (Chapter 518). I summarize the results and conclude in Chapter 6.
The technologies, techniques and tools that I used are described in Chapter 2.

Appendix A includes the description of all significant files that were used for
performance benchmarking and optimization as well as describes the rest of the
contents of the DVD attached to this thesis.

18The basis of this chapter is the documentation that I created while working on my traineeship
at the University of Edinburgh. Available for download here:
https://github.com/links-lang/links/blob/dariusz/documentation/performance3.pdf.

4

https://github.com/links-lang/links/blob/dariusz/documentation/performance3.pdf

Chapter 2

Tools and methods

This Chapter briefly describes the tools that I used in my work: programming
languages, software and the functional paradigm.

2.1 Programming languages

2.1.1 Links

I used the Links programming language1, which is an experimental language for
web programming. It was created and is being developed by a team of researchers
led by Philip Wadler at the University of Edinburgh [9].

My goals in choosing this language:

• Explore in practice how functional languages and compilers work internally.

• Contribute to developing the language.

• Research functional programming in game development.

• Learn more about JavaScript – another language I am interested in – as this
the main target language of the Links’ compiler.

Links is being actively developed and some of its features changed as I was
working on my project. I learned how to use it from the basic documentation [1]
and the help of researchers who develop it. It has a curly brace-based syntax and
features typical for functional languages as well as some features characteristic of
itself. I describe these below.

The core concept of Links is that it combines the functionality of languages
used for programming three main components of a web application: server side,
client side, and database. This is typically done using different languages, such as
Java, JavaScript and SQL.

The Links compiler takes care of generating code for each of the three tiers
producing a complete Asynchronous JavaScript and XML (AJAX) application.

1http://groups.inf.ed.ac.uk/links/

5

http://groups.inf.ed.ac.uk/links/

CHAPTER 2. TOOLS AND METHODS

The client side part of an application in Links is compiled to JavaScript. This part
was my focus.

Links features strong static typing and strict (eager) evaluation. It provides
mechanisms for concurrency based somewhat on those found in the Erlang lan-
guage2: we can create threads (called processes) and communicate with them via
message passing.

The syntax of the language can be seen on the listing below. It is a source code
of a simple client-side application that adds and removes items from a todo list3:

fun remove (item , items) {
switch (items) {

case [] −> []
case x : : xs −> i f (item == x) xs

e l s e x : : remove (item , xs)
}

}
fun todo (items) c l i e n t {

<html>
<body>
<form l : onsubmit=

"{ replaceDocument (todo (item : : i tems))}">
<input l : name="item"/>
<button type="submit">Add item</button>

</form>
<table>
{ f o r (item <− i tems)

<tr><td>{stringToXml (item)}</td>
<td><form l : onsubmit=

"{ replaceDocument (
todo (remove (item , items)))}">

<button type="submit">Completed</button>
</form>

</td>
</tr >}

</table>
</body>

</html>
}

page
<#>{todo ([" add items to todo l i s t "])}</#>

2http://www.erlang.org/doc/getting_started/conc_prog.html
https://github.com/links-lang/links/blob/sessions/README

3Taken from one of the official examples:
http://groups.inf.ed.ac.uk/links/examplessrc/todo.links

6

http://www.erlang.org/doc/getting_started/conc_prog.html
https://github.com/links-lang/links/blob/sessions/README
http://groups.inf.ed.ac.uk/links/examplessrc/todo.links

CHAPTER 2. TOOLS AND METHODS

The syntax is a little C-like, with curly braces and familiar looking function
definitions and invocations. Some typical functional constructs look more familiar
to an imperative programmer as they are hidden under syntax sugar (for loops
are list comprehensions, switch-case blocks are pattern matching). We see that
we can easily use XML (HTML) in the source code, thanks to XML quasiquotes4.

2.1.2 JavaScript

JavaScript is an integral part of the Open Web Platform5. It is the “lingua franca of
the web”6. It is one of the most popular – if not the most popular7 – programming
languages on the web. It has been even dubbed the “Assembly of the Web”8. It is a
part of all modern web browsers, which means that nearly every Internet user has
it available. It is used, among other things, for writing client-side asynchronous
applications.

It is multi-paradigm, having object-oriented (prototype-based), imperative and
functional features.

The development and adoption of the HTML5 standard makes JavaScript or
languages that compile to it the perfect choice for developing computer games on
the web9.

My optimizations to Links’ runtime involved working a lot with JavaScript.
The following were written by me in JavaScript:

• Optimized versions of existing functions and methods.

• Interfaces for JavaScript functions that were called from Links. These include
functions for manipulating HTML5 canvas element, functions for manipulat-
ing linked lists, specialized equality functions and some debugging functions.

• A native version of the benchmark application for comparison with the Links’
version.

2.1.3 OCaml

The Links’ compiler is written in the OCaml language. OCaml10 supports multiple
programming paradigms – primarily functional and object-oriented. The language

4http://groups.inf.ed.ac.uk/links/quick-help.html#xml_quasiquotes
Also see Chapter 4, 4.3.9 for a brief description.

5http://www.w3.org/wiki/Open_Web_Platform
http://www.webplatform.org/
http://en.wikipedia.org/wiki/Open_Web_Platform

6http://blog.codinghorror.com/javascript-the-lingua-franca-of-the-web/
7http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

January Headline: JavaScript programming language of 2014!
8http://www.hanselman.com/blog/JavaScriptIsWebAssemblyLanguageAndThatsOK.aspx
9https://developer.mozilla.org/en-US/docs/Games/Introduction_to_HTML5_Game_

Gevelopment_%28summary%29
10http://ocaml.org/

7

http://groups.inf.ed.ac.uk/links/quick-help.html#xml_quasiquotes
http://www.w3.org/wiki/Open_Web_Platform
http://www.webplatform.org/
http://en.wikipedia.org/wiki/Open_Web_Platform
http://blog.codinghorror.com/javascript-the-lingua-franca-of-the-web/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.hanselman.com/blog/JavaScriptIsWebAssemblyLanguageAndThatsOK.aspx
https://developer.mozilla.org/en-US/docs/Games/Introduction_to_HTML5_Game_Gevelopment_%28summary%29
https://developer.mozilla.org/en-US/docs/Games/Introduction_to_HTML5_Game_Gevelopment_%28summary%29
http://ocaml.org/

CHAPTER 2. TOOLS AND METHODS

has a static type system with advanced type inference. It is used in many applica-
tions11. Its features make it well-suited for writing compilers12.

One of my optimizations (see Chapter 5, 5.5.11) required a slight change in the
JavaScript generated by the compiler. This required me to learn the basics of the
OCaml language.

2.1.4 Haskell

Haskell13 is one of the most popular functional programming languages. It was
my choice for learning the basics of the functional paradigm [14]. It is a purely
functional language with lazy evaluation and static strong typing.

I ported a lot of code for the first three games that I developed from Haskell.
I also ported some functions from its standard library (see Chapter 5, 4.3.1, 4.1).

2.2 Software

For writing applications in Links I used Geany14 – a text editor with basic Inte-
grated Development Environment (IDE) capabilities. No existing IDEs have sup-
port (like syntax coloring) for the Links programming language.

To run Links applications on my computer, which runs the Arch Linux oper-
ating system, I set up an environment according to official install instructions15. I
built Links’ interpreter from source code using the recommended version (4.01) of
the OCaml compiler.

In order to test the applications I installed the XAMPP16 package, which pro-
vides an Apache HTTP Server17.

The Links project uses GitHub18 for hosting source code. I worked on my own
branch19 using the Git20 command line tool.

I used three different web browsers to compare performance and garbage col-
lectors’ behaviour between them: Chromium 36.0.1985.143, Opera 25.0.1583.1 and
Firefox 30.0.

No external libraries were used in my applications as none are available for the
Links language.

11https://ocaml.org/learn/companies.html
12http://flint.cs.yale.edu/cs421/case-for-ml.html
13https://www.haskell.org/haskellwiki/Haskell
14http://www.geany.org/
15https://github.com/links-lang/links/blob/sessions/INSTALL
16https://www.apachefriends.org/index.html
17http://httpd.apache.org/
18https://github.com/
19https://github.com/links-lang/links/tree/dariusz
20http://git-scm.com/

8

https://ocaml.org/learn/companies.html
http://flint.cs.yale.edu/cs421/case-for-ml.html
https://www.haskell.org/haskellwiki/Haskell
http://www.geany.org/
https://github.com/links-lang/links/blob/sessions/INSTALL
https://www.apachefriends.org/index.html
http://httpd.apache.org/
https://github.com/
https://github.com/links-lang/links/tree/dariusz
http://git-scm.com/

CHAPTER 2. TOOLS AND METHODS

2.3 Programming paradigms and methods
Aside from exploring optimization possibilities for the Links language, the main
focus of this thesis was to assess the viability of developing games using the func-
tional paradigm21.

Functions in the functional paradigm are defined in the same way as in math-
ematics – their output values depend only on the arguments that are input to the
them. The other main point of functional programming is avoiding the use of mu-
table data and state changes. The paradigm is declarative, focusing on specifying
the what rather than the how, and its principal constructs are expressions rather
than statements as it tries to minimize or eliminate side effects. These properties
allow for easier formal analysis of programs, which means reasoning about their
behavior.

In terms of abstraction, functional languages belong to the category of (very)
high level languages. They manage memory automatically, with the help of some
sort of a garbage collector.

There are dynamically as well as statically typed functional languages. In stat-
ically typed languages such as Haskell, OCaml or Links an important feature is
type inference, which facilitates writing code and makes it much less cluttered.

Static strong typing, like in Links, means that for the price of sometimes harder
to write code, essentially all type errors are caught by the compiler at compile time.
This feature helped me immensely with debugging the applications that I wrote in
Links as there is no debugging tools available for this language.

Programs written in the functional style are usually shorter than imperative
ones. Functional programming, due to its high level of abstraction and declarative-
ness, allows for writing more expressive and shorter (than imperative) code.

21http://en.wikipedia.org/wiki/Functional_programming
http://c2.com/cgi/wiki?FunctionalProgramming

9

http://en.wikipedia.org/wiki/Functional_programming
http://c2.com/cgi/wiki?FunctionalProgramming

CHAPTER 2. TOOLS AND METHODS

10

Chapter 3

Background

3.1 Functional programming in game development

Functional programming is not widely used in game development, but it has poten-
tial to become significant in this field. In recent years it has been gaining interest
and popularity in the game development industry.

I will attempt to describe the functional paradigm from a game developer’s
perspective, heavily referencing John Carmack’s keynote speech [6, 7] as I think
that in it he presents a very good summary of arguments for and against functional
programming in game development. And does so from a very practical, experience-
based perspective.

He did research on the use of Haskell in game development by porting the
game Wolfenstein 3D1 to the language. In the keynote he describes his findings and
conclusions that he came to whilst developing this project, as well as functional
paradigm and its pros and cons in general.

3.1.1 Potential advantages

Carmack states that the “brutal purity” of the Haskell language and static strong
typing enforce writing code that is shorter, cleaner, less bug-prone and better
to maintain in the long term compared to imperative code. He says that using
a functional language like Haskell in game development could potentially make
programming much easier.

If we define a spectrum of functional purity, then a typical imperative language
(such as C) would be considered almost completely impure and a typical purely
functional language, such as Haskell would be considered almost completely pure.
The end on this spectrum that mainstream languages appear to be moving towards
is purity. Some proponents have stronger positions on purity (Carmack), some
weaker [12].

This adoption of functional features and then move towards purity should in-
crease with changes and improvements in hardware, most of which is currently

1http://en.wikipedia.org/wiki/Wolfenstein_3D

11

http://en.wikipedia.org/wiki/Wolfenstein_3D

CHAPTER 3. BACKGROUND

much better suited to work with imperative languages [4].
According to Tim Sweeney, a major advantage of functional languages over

imperative ones in the future is related to them being better in handling heavy
parallelism and multithreading (see [18], slide 61).

On the issue of static vs dynamic typing Carmack’s stance is very much leaning
towards the strong static approach. He argues that even though sometimes writing
statically typed code can be not particularly comfortable as the programmer needs
to “build up a type scaffolding for something that should be really easy”, it provides
very significant benefits.

Carmack, referencing his experience in supervising and programming big game
projects, states:

Everything that is syntactically legal, that the compiler will accept,
will eventually wind up in the code base.

This is one of the reasons why static typing and static analysis of code can be
very valuable as they restrict programmers, preventing and picking up on a lot of
bugs at the compiler-level.

In [5] Carmack talks more about functional programming in game development.
He argues for the use of functional paradigm even in non-functional languages
(precisely C++). A few excerpts from this article also provide a good overview of
the advantages and disadvantages of FP in game programming:

A large fraction of the flaws in software development are due to pro-
grammers not fully understanding all the possible states their code may
execute in. In a multithreaded environment, the lack of understanding
and the resulting problems are greatly amplified, almost to the point
of panic if you are paying attention. Programming in a functional style
makes the state presented to your code explicit, which makes it much
easier to reason about, and, in a completely pure system, makes thread
race conditions impossible.

I do believe that there is real value in pursuing functional programming,
but it would be irresponsible to exhort everyone to abandon their C++
compilers and start coding in Lisp, Haskell, or, to be blunt, any other
fringe language...

He states:

No matter what language you work in, programming in a functional
style provides benefits.

12

CHAPTER 3. BACKGROUND

3.1.2 Issues and disadvantages

Because of the fact that functional data structures are immutable and the paradigm
avoids changing state, a typical functional-style application does a lot more copying
and is much more memory-intensive than a typical imperative application. This
and other principles of the functional paradigm (like avoiding side effects) can carry
a significant performance overhead compared to imperative solutions.

In the aforementioned keynote speech [6, 7] Carmack also mentions the down-
sides and issues of FP and discusses possible solutions to them. One of the issues
is the performance impact of the garbage collector, which, he says, is manageable
provided that the overhead introduced by the GC is fixed. And from developer’s
perspective, automatic memory management makes programming easier.

He describes a way of dealing with state changes and side effects in a pure func-
tional language, which is based on an event-passing mechanism. Carmack states
that in general it is preferable to minimize the use of such mechanisms in imper-
ative languages as they “decouple the flow of control”. But in case of functional
programming “that’s the only way to do effects”. And in the Haskell language such
approach turns out, as he describes, “really clean”, thanks to the feature of partial
function application (which is fairly common in functional languages).

Besides the above, because of the paradigm still being largely experimental
and not very popular in game development, there is a problem with lack of good
libraries for making games. This means that it is harder for a beginner programmer
to start programming.

3.1.3 Adoption of the paradigm

When it comes to video games, the reasons for slow adoption of new, higher-level
concepts and languages have to do a lot with performance. In game development,
especially mainstream (complex, AAA games), one of the main points of focus is
trying to stay on the cutting edge of performance, which means writing games so
that they meet strict performance requirements. (Video games can be considered
to be soft-realtime systems [13].)

This explains why the assembly language was used in game development for a
long time [17] and higher-level languages were adopted more slowly than in less
performance-intensive applications.

As the computational capabilities and complexity increases, more abstract and
higher-level solutions are preferred. Developing a modern AAA game in Assembly
would take an unreasonable amount of time and effort. So in exchange for expres-
sive power and ability to operate on higher levels of abstraction some performance
sacrifices are necessary and accepted.

Functional languages are on a very high level of abstraction, so extrapolating
the aforementioned trend it should be the direction we will be going in. And indeed,
as we can observe and conclude from what I stated so far in this chapter, it seems
to be.

13

CHAPTER 3. BACKGROUND

3.1.4 Examples

One of the most notable functional languages that was used for game development
is Haskell. Games that were written in Haskell include:

• Nikki and the Robots, that was sold on Steam2,

• Frag3, a first-person shooter, implemented to investigate the use of functional
reactive programming in games [8],

• Raincat4, a game developed by Carnegie Mellon5 students,

• Super Nario Bros.6, a clone of Nintendo’s classic

as well as various bigger and smaller games or game-related projects created by
Haskell community7.

Creating games with Haskell is becoming easier as wrappers, frameworks and
engines are being developed. For example:

• Bullet8, a wrapper for the Bullet9 physics engine,

• LambdaCubeEngine10, a Domain Specific Language for 3D graphics,

• IrrHaskell11, a wrapper for the Irrlicht12 game engine,

• haskell-game13, which provides “a suite of libraries for covering all sorts of
aspects of game development”,

• Helm engine14 (inspired by the Elm15 language), which allows programming
using functional reactive programming. Yampa16, used in [8], is a similar
project.

2http://steamcommunity.com/sharedfiles/filedetails/?id=107105028
3https://www.haskell.org/haskellwiki/Frag
4http://bysusanlin.com/raincat
5http://www.cmu.edu/index.shtml
6https://www.youtube.com/watch?v=gVLFGQGRsDw
7http://hackage.haskell.org/packages/#cat:Game

https://www.haskell.org/haskellwiki/Applications_and_libraries/Games
http://keera.co.uk/blog/2014/11/24/haskell-android-games-adventure-engine-beta-
testing/

8http://hackage.haskell.org/package/bullet
9http://bulletphysics.org/wordpress/

10https://www.haskell.org/haskellwiki/LambdaCubeEngine
11http://hackage.haskell.org/package/IrrHaskell
12http://irrlicht.sourceforge.net/
13https://github.com/haskell-game
14http://helm-engine.org/
15http://elm-lang.org/
16https://www.haskell.org/haskellwiki/Yampa

14

http://steamcommunity.com/sharedfiles/filedetails/?id=107105028
https://www.haskell.org/haskellwiki/Frag
http://bysusanlin.com/raincat
http://www.cmu.edu/index.shtml
https://www.youtube.com/watch?v=gVLFGQGRsDw
http://hackage.haskell.org/packages/#cat:Game
https://www.haskell.org/haskellwiki/Applications_and_libraries/Games
http://keera.co.uk/blog/2014/11/24/haskell-android-games-adventure-engine-beta-testing/
http://keera.co.uk/blog/2014/11/24/haskell-android-games-adventure-engine-beta-testing/
http://hackage.haskell.org/package/bullet
http://bulletphysics.org/wordpress/
https://www.haskell.org/haskellwiki/LambdaCubeEngine
http://hackage.haskell.org/package/IrrHaskell
http://irrlicht.sourceforge.net/
https://github.com/haskell-game
http://helm-engine.org/
http://elm-lang.org/
https://www.haskell.org/haskellwiki/Yampa

CHAPTER 3. BACKGROUND

Other functional languages, such as F#17, or the languages from Lisp family18

are also being used in game development.

3.2 JavaScript games and garbage collector
The main issue impacting performance in JavaScript game development is the
slowdowns caused by the garbage collector19.

In order to alleviate this problem, games written in JavaScript have to manage
the memory usage in a way that generates as little garbage as possible.

In case of a language that compiles to JavaScript, like Links, it is also impor-
tant that the runtime system generates as little overhead (including garbage) as
possible. This is what my optimizations were focused on.

3.3 Links’ compiler
Before talking about potential performance bottlenecks in Links’ runtime system,
I will introduce some background and describe briefly all the elements of Links
that were relevant in my optimizations.

Because of Links being an active research project, experimental in nature –
there is no documentation available for its compiler or runtime20. My descriptions
come from reverse engineering of the system.

3.3.1 The setTimeout function

The client side part of an application in Links is compiled to JavaScript. The
compiler generates JavaScript in continuation-passing style. It uses the setTimeout
function to support concurrency (see 3.4.1).

setTimeout is one of a few timer functions21 used in JavaScript for asyn-
chronous programming. These are native JavaScript functions that allow delay-
ing of execution of arbitrary instructions. setTimeout(func, delay) is usually
supplied with two arguments: a callback function to execute and a delay in mil-
liseconds, after which this function will be executed.

17http://fsharp.org/guides/apps-and-games/index.html
18http://lispgames.org/

http://c2.com/cgi/wiki?LispInJakAndDaxter
19http://www.gamedev.net/page/resources/_/technical/game-programming/writing-

fast-javascript-for-games-interactive-applications-r3516
20In fact, there is only basic documentation available for the language [1], which describes its

syntax, type system, some features, library functions, and how to run scripts in Links.
21https://developer.mozilla.org/en-US/Add-ons/Code_snippets/Timers

15

http://fsharp.org/guides/apps-and-games/index.html
http://lispgames.org/
http://c2.com/cgi/wiki?LispInJakAndDaxter
http://www.gamedev.net/page/resources/_/technical/game-programming/writing-fast-javascript-for-games-interactive-applications-r3516
http://www.gamedev.net/page/resources/_/technical/game-programming/writing-fast-javascript-for-games-interactive-applications-r3516
https://developer.mozilla.org/en-US/Add-ons/Code_snippets/Timers

CHAPTER 3. BACKGROUND

3.3.2 Significant source files

These two source files of the Links compiler are important for my optimizations:

• lib.ml – this file among other things provides the Links compiler with decla-
rations of functions defined in jslib.js library (described the next section).
I modified it each time I wanted to add an interface to a JavaScript function
or define some function natively in JavaScript.

• irtojs.ml – this is a source file of the Links compiler that contains the part
of it responsible for generating JavaScript code from an intermediate repre-
sentation. I modified it to implement the optimization described in Chapter
5, 5.5.11.

3.4 Links’ runtime system
The main part of Links’ runtime system that cooperates with compiled JavaScript
applications is contained within the jslib.js library. Below I describe briefly some
of its significant, from the point of view of my optimizations, components22.

3.4.1 Concurrency in Links

Links supports concurrency by providing a means of forking the main thread of
control into more threads (called processes in Links). This is done using the spawn
language primitive:

var p roc e s s Id = spawn { expr e s s i on } ;

From Links’ documentation [1]:

This starts a new process which begins by evaluating expression. The
value of the expression is discarded if evaluation ever completes. spawn
returns an identifier of the new process to the calling process.

The work of process scheduling is essentially handled by two functions in the
Links runtime: _yield and _yieldCont23.

To see the JavaScript implementation of _yield (_yieldCount is almost iden-
tical), please refer to Chapter 5, 5.5.11 or to the file jslib.js attached to this thesis.

22Note: while describing or enumerating various JavaScript or Links functions, depending on
whether it is relevant in the context, I use just their name, name and list of arguments, a fragment
of definition or a full definition. Sometimes I change the original names of arguments (like x, c
and the like) to more descriptive to improve clarity.

23I will later sometimes refer to both of these as _yield*.

16

CHAPTER 3. BACKGROUND

Here is a brief description of these functions and global variables relevant to
them:

• _yield(func, arguments, continuation) – has 3 arguments: a function
in continuation-passing style, a list of arguments for this function and the
continuation that this function will “return” into. It uses setTimeout to
invoke the function asynchronously, immediately when control is available
– the second argument to setTimeout is 0. The important effect that this
causes is clearing of the JavaScript engine’s call stack, which prevents an
overflow. A stack overflow would be inevitable as continuation-passing style
functions instead of returning call continuations, quickly filling the call stack.

• _yieldCont(continuation, argument) – takes a continuation and an
argument that will be “returned into” it. Works in the same way as _yield,
except that this continuation is passed to setTimeout instead of a function.

• _yieldCount – a counter variable that counts calls to _yield*. It is incre-
mented every time any of the two _yield* functions is invoked.

• _yieldGranularity – determines at what value of _yieldCount should the
call stack be cleared.

• _current_pid – stores the identifier of the currently active process.

The concurrency is enabled at the runtime system level thanks to the use of
continuations. Upon compilation, invocations of Links functions and returns from
them are translated to JavaScript as follows: _yield is used to wrap invocations
of continuation-passing style functions and _yieldCont wraps invocations of con-
tinuations in these functions (a continuation in CPS is invoked when a function
“returns”). Both _yield* functions take care of periodically clearing the call stack
and giving up control to any process that might need it by calling setTimeout.

The fact that invocations and returns from functions are the majority of a typ-
ical Links application means that _yield and _yieldCont are the most frequently
called functions in the compiled (JavaScript) code and they take up the most of the
execution time of the application (see Chapter 5, 5.5.5). Because of this it is crucial
that their implementation is as optimal as possible – even a slight optimization
will have a great impact on the overall performance.

3.4.2 Passing messages to processes

We create a new Links process using the spawn primitive, which returns its iden-
tifier. We can then use this identifier to pass messages to the process. From Links’
documentation [1]:

This identifier can be used to address messages to the new process,
with the ! primitive (pronounced “send”):

procId ! msg

17

CHAPTER 3. BACKGROUND

This appends the value msg to the mailbox for the process identified
by procID. The return value is just (). The mailbox is FIFO, so if you
know that some message is sent before some other message, you know
they will be received in that order.

Each process’ mailbox is given a static type according to the messages
it expects to receive.

[...]

A process can receive messages using the recv function, which returns
the next message in the current process’ mailbox.

var nextMsg = recv ()

Before I introduced any optimizations the spawn primitive was implemented as
follows:

f unc t i on _spawn(f) {
_maxPid++;
var ch i ldP id = _maxPid ;
_makeMailbox (ch i ldP id) ;
setTimeout (func t i on () {

_debug(" launched proce s s #" + ch i ldP id) ;
_current_pid = ch i ldP id ;
f (f unc t i on () {

// d e l e t e the mailbox when f i n i s h e d
d e l e t e _mailboxes [ch i ldP id] ;

})
} , 0) ;

r e turn ch i ldP id ;
}

Where _maxPid is the highest process identifier allocated so far. _makeMailbox
is defined like so:

var _mailboxes = { 0 : [] } ;

f unc t i on _makeMailbox (pid) {
i f (! _mailboxes [pid])

_mailboxes [pid] = [] ;
}

f is the expression (zero-argument function) passed to spawn. It is scheduled
to run as a new "process" using setTimeout with second argument of 0 (meaning
immediately when the control is available). When it finishes, it calls a continuation
that deletes its mailbox.

18

CHAPTER 3. BACKGROUND

Before I introduced any optimizations the ! primitive was defined as follows:

f unc t i on _Send(pid , msg) {
_debug(" sending message ’" + msg . _label +

" ’ to pid " + pid) ;
i f (! _mailboxes [pid])

_makeMailbox (pid) ;
_mailboxes [pid] . un sh i f t (msg) ;
_wakeup(pid) ;
_debug(pid + ’ now has ’ + _mailboxes [pid] . l ength +

’ message (s) ’) ;
_dumpSchedStatus () ;
r e turn {} ;

}

The definition of _wakeup:

var _blocked_procs = {} ;

func t i on _wakeup(pid) {
i f (_blocked_procs [pid]) {

_debug("Waking up " + pid) ;
var proc = _blocked_procs [pid] ;
d e l e t e _blocked_procs [pid] ;
setTimeout (proc , 0) ;

}
}

Processes use the recv function for receiving messages:

f unc t i on recv (kappa) {
// (1)
i f (_mailboxes [_current_pid] . l ength > 0) {

msg = _mailboxes [_current_pid] . pop () ;
kappa (msg) ;

} e l s e {
var current_pid = _current_pid ;
_block_proc (current_pid ,

func t i on () {
_current_pid = current_pid ;
recv (kappa) ;

}) ;
}

}

I removed a few calls to DEBUG.assert from the beginning of the definition (at
line marked with the (1) comment) for brevity. kappa is the continuation, which
receives the next message in current active process’ mailbox.

19

CHAPTER 3. BACKGROUND

If there are no messages in the mailbox, the process is blocked until there are:

f unc t i on _block_proc (pid , i t s_cont) {
_blocked_procs [pid] = its_cont ;

}

3.4.3 Lists

jslib.js defines the usual basic list manipulating functions, such as:

Concat (xs , ys) ,
Cons (x , xs) ,
empty (l i s t) ,
hd (l i s t) , // head
t l (l i s t) , // t a i l
l ength (l i s t) ,
take (n , l i s t) ,
drop (n , l i s t) ,
max(l i s t) ,
min (l i s t) ,
// e t c .

These are implemented using regular JavaScript arrays as representation for
lists. For example:

f unc t i on _hd(l i s t) { re turn l i s t [0] ; }
func t i on _take (n , l i s t) { re turn l i s t . s l i c e (0 , n) ; }

This is certainly not an optimal representation as manipulating JavaScript
arrays involves a lot of copying. Using a simple linked list implementation improves
performance significantly and gives a better memory footprint (see Chapter 5, 5.5.6,
5.5.8).

3.4.4 Equality

Checking for equality of two values is done using the LINKS.eq(left, right)
function defined in jslib.js. It compares left and right side, using dynamic type
checking functions like:

DEBUG. i s_ob jec t (va lue) ,
DEBUG. is_number (va lue) ,
DEBUG. i s_s t r i n g (va lue) ,
DEBUG. is_array (value)

20

CHAPTER 3. BACKGROUND

Most of them utilize the is_instance function, defined in the following way:

func t i on i s_ ins tance (value , type , c on s t ruc to r) {
re turn value != undef ined

&& (typeo f va lue == type | |
va lue i n s t an c e o f Object &&
value . c on s t ruc to r == cons t ruc to r) ;

}

For example, DEBUG.is_number, which is defined like so:

r e turn i s_ ins tance (value , ’ number ’ , Number) ;

So LINKS.eq checks the type of the compared entities and uses an appropriate
method of comparison for these types. For example for an array:

// t h i s i s a fragment o f LINKS . eq d e f i n i t i o n :
i f (DEBUG. is_array (l) && l != nu l l &&

DEBUG. is_array (r) && r != nu l l) {
i f (l . l ength != r . l ength)

re turn f a l s e ;

f o r (var i = 0 ; i < l . l ength ; ++i) {
i f (! LINKS . eq (l [i] , r [i]))

r e turn f a l s e ;
}

re turn true ;
}

This way of doing comparison can certainly be optimized at compiler level,
taking advantage of all the available static type information and perhaps using
specialized equality functions in the compiled JavaScript, which I simulated in one
of my optimizations – see Chapter 5, 5.5.10.

3.4.5 Debugging

The main debugging functions are as follows:

• DEBUG.assert(predicate, message) – just throws an exception and dis-
plays a simple error message informing which assertion failed (predicate is
false).

• DEBUG.assert_noisy(predicate, message) – throws an exception and dis-
plays more detailed error message, prints a stack trace.

• _debug(message) – prints _current_pid and an error message.

All debugging functions will display error messages if the DEBUGGING flag is set to
true. Otherwise, they won’t.

21

CHAPTER 3. BACKGROUND

22

Chapter 4

Web game design and
implementation

In order to achieve the goals of this thesis, I developed four web games and a
benchmark application in Links, the purpose of which was to test the effectiveness
of the optimizations that I introduced to the language’s runtime system.

4.1 Implemented web games
I approached writing games in Links by developing projects of increasing complex-
ity and implementational difficulty. The basis for the first three games were their
versions written in Haskell123. I started by porting the code from that language,
modifying and adjusting it as I went. The last game (based on Pac-Man4) was
designed and written from scratch.

1https://github.com/gregorulm/h2048
2https://github.com/RudolfVonKrugstein/jshaskell-blog
3https://github.com/isomorphism/lazy-tetrominoes
4http://en.wikipedia.org/wiki/Pac-Man

23

https://github.com/gregorulm/h2048
https://github.com/RudolfVonKrugstein/jshaskell-blog
https://github.com/isomorphism/lazy-tetrominoes
http://en.wikipedia.org/wiki/Pac-Man

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

The first game I wrote was a clone of the popular puzzle game 20485.

Figure 4.1: The puzzle game 2048 implemented in Links

5http://en.wikipedia.org/wiki/2048_%28video_game%29

24

http://en.wikipedia.org/wiki/2048_%28video_game%29

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

The second was a clone of the classic Breakout6.

Figure 4.2: A Breakout clone in Links

6http://en.wikipedia.org/wiki/Breakout_%28video_game%29

25

http://en.wikipedia.org/wiki/Breakout_%28video_game%29

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

Next I implemented a clone of Tetris7.

Figure 4.3: Links version of the classic Tetris

7http://en.wikipedia.org/wiki/Tetris

26

http://en.wikipedia.org/wiki/Tetris

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

Finally I designed and wrote a variation of Pac-Man.

Figure 4.4: My variation of Pac-Man written in Links

In the next section I describe the design and implementation of the game.

4.1.1 Benchmark

While implementing the Breakout clone I wrote a benchmark application8 and
started introducing optimizations to Links’ runtime system to improve its perfor-
mance.

The benchmark is implemented similarly to all of the games. Its purpose is
measuring and collecting data about changes of its own frame rate in time and
presenting this data on charts.

8Described in detail in Chapter 5, 5.2

27

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

4.2 Requirements and design
The standard frame rates in modern computer games are 30 or 60 Frames Per
Second (FPS)9.

Two important reasons for such frame rate requirements are10:

1. They allow for acceptable responsiveness of player’s input.

2. The perceived smoothness of animation is satisfactory for a typical player.

I assumed 60 FPS as my target ideal frame rate and 30 FPS as the absolute
minimum. This would be in an average simple web game on average hardware.

The most complex of the games I wrote is a variation of the classic Pac-Man.
The computational complexity of Pac-Man in my view represents well the com-
plexity of a typical simple HTML5 web game.

The dimensions of the game area were set to 600x480, which are about the
average in web-based (HTML5 or other) games11.

Figure 4.5: A screenshot showing all of the contents of a web page that contains
the game

9http://www.polygon.com/2014/6/5/5761780/frame-rate-resolution-graphics-
primer-ps4-xbox-one

10http://gaming.stackexchange.com/questions/25465/why-do-video-game-
framerates-need-to-be-so-much-higher-than-tv-and-cinema-framer

11http://www.emanueleferonato.com/2009/04/20/the-perfect-size-for-a-flash-
game/

28

http://www.polygon.com/2014/6/5/5761780/frame-rate-resolution-graphics-primer-ps4-xbox-one
http://www.polygon.com/2014/6/5/5761780/frame-rate-resolution-graphics-primer-ps4-xbox-one
http://gaming.stackexchange.com/questions/25465/why-do-video-game-framerates-need-to-be-so-much-higher-than-tv-and-cinema-framer
http://gaming.stackexchange.com/questions/25465/why-do-video-game-framerates-need-to-be-so-much-higher-than-tv-and-cinema-framer
http://www.emanueleferonato.com/2009/04/20/the-perfect-size-for-a-flash-game/
http://www.emanueleferonato.com/2009/04/20/the-perfect-size-for-a-flash-game/

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

The user interface for my games was kept very simple: I placed the title of the
game at the very top of the web page, below it the game area and a few simple
instructions for the player (explaining controls). The game is initialized when the
user clicks on the game area (the canvas).

Figure 4.6: What the player sees after launching the game (entering a web page
that contains it)

29

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

4.3 Anatomy of a game
Implementation-wise all of the applications – including the benchmark – follow
similar structure12:

1. Auxiliary function definitions.

2. Type definitions.

3. main function definition, which includes definitions of:

(a) values (describing dimensions and appearance of game area and objects,
duration times of animations, properties of game objects, game logic,
key codes, simulation parameters, etc.),

(b) game-specific auxiliary functions,

(c) the main and auxiliary drawing functions,

(d) main game logic functions (for collision detection, game object manip-
ulation, etc.),

(e) input handling functions,

(f) functions for game processes/threads,

(g) and finally the structure and appearance of the the web page (HTML
and CSS) on which the interface of the game is displayed.

4. Invocation of main().

I will now briefly describe elements of this structure13.

12Links so far has no support for modules or a built-in way of including source files, so I decided
to use a single source file per application and copy-paste the common parts. I experimented with
using a Perl script or sed (www.gnu.org/software/sed/) and C preprocessor to do the copy-
paste for me, but decided to stick to the manual method. For small size projects this was not
particularly inconvenient.

13In these descriptions, I will be quoting some Links code – usually with a brief explanation of
how it works. In places where syntax or semantics of the language proves not intuitive enough,
please refer to the official documentation [1]

30

www.gnu.org/software/sed/

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

4.3.1 Auxiliary functions

While developing applications in Links I defined a small library of general-purpose
functions, which includes:

1. Mathematical functions, particularly for manipulating 2D vectors (addition,
subtraction, multiplication). These had to have separate versions for oper-
ating on arguments of integer and floating point types as Links does not do
conversion between those and even has a separate set of operators for floats.

2. Functions ported from Haskell’s standard library. As I mentioned, the first
games I developed were based on code written in Haskell which used some
functions with no direct equivalents available in Links. This required using
a different approach or porting the functions from Haskell. The ports were
approached pragmatically and sometimes not exact, with the main point
being that the application using the functions works as it should. In one
case – while implementing the Tetris clone – I wrote a version of IntMap14

that emulated the original’s functionality, but did not preserve all of it – my
version of elems15 does not sort the elements by key as it was not necessary
in the particular case.

3. Functions for manipulating my custom linked list type. One of my optimiza-
tions involved implementing a linked list type in JavaScript to replace the list
type (based on JavaScript arrays) used by default in Links (see 5.5.6). Most
of these were implemented directly in JavaScript, except for a few, which
– for simplicity of implementation – were written in Links. These include a
faster version of map, which only applies a function to all elements of a list
and does not return a new list as it is concerned only with the side-effects of
the function. This is its definition in Links:

fun lsMapIgnore (f , l) {
i f (lsEmpty (l)) ()
e l s e { var _ = f (lsHead (l)) ;

lsMapIgnore (f , l s T a i l (l)) }
}

The names of the list manipulating functions that I implemented all have an
ls- prefix.

4.3.2 Type definitions

An example of a type or, more precisely, type alias definition in Links16 is:

typename Vector = (Float , Float) ;

14https://hackage.haskell.org/package/containers-0.1.0.1/docs/Data-IntMap.html
15https://hackage.haskell.org/package/containers-0.1.0.1/docs/Data-IntMap.

html#v:elems
16http://groups.inf.ed.ac.uk/links/quick-help.html#type_aliases

31

https://hackage.haskell.org/package/containers-0.1.0.1/docs/Data-IntMap.html
https://hackage.haskell.org/package/containers-0.1.0.1/docs/Data-IntMap.html#v:elems
https://hackage.haskell.org/package/containers-0.1.0.1/docs/Data-IntMap.html#v:elems
http://groups.inf.ed.ac.uk/links/quick-help.html#type_aliases

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

Here we define a Vector type, which is a tuple17 of two floating point values.
After defining a type alias, we can use it instead of writing out the whole type. I
describe some type alias definitions in following sections.

4.3.3 The main function

In the following sections, I describe in detail how the main loop [10] of my appli-
cations works. Most of the Links code that follows is taken from the source of my
Pac-Man clone.

When reading the code note that we operate on the game state very explicitly,
passing it around and modifying it in various functions.

This is characteristic of the functional approach and in opposition to the imper-
ative way, where the game state is usually implicit and defined by many variables,
which are subject to side-effects.

4.3.4 Updating game state

I describe the code in this section in order in which it appears in the original
source. It is important, because the code uses processes, which send messages
to each other. In such case, Links’ compiler requires that the processes that are
referred to at some point in the code (by their identifier) are defined before that
point. The order of definition of functions that do not refer to processes does not
matter.

In order to facilitate reading the descriptions, I marked some lines of code with
comments containing an identifier in square brackets (e.g. [updateState.1]). I
will refer to those identifiers (printed in bold type) in my explanations.

The main function responsible for handling input and updating game state is
updateState, defined as follows:

fun updateState () {
fun mainLoop (gameState : Game, dt ,

lastTime , fp s In f o , i i) {
[updateState . 1]
t h i s i s the main game loop . . .

}

var _ = recv () ; # [updateState . 2]
wait f o r i n i t i a l i z e ()

mainLoop (ge t In i t i a lGameState () , 0 . 0 , c l i entTime () ,
i n i t i a l F p s I n f o , []) ; # [updateState . 3]

i f (not (haveMail ())) s e l f () ! CarryOn e l s e () ;
[updateState . 4] r e s t a r t

updateState () # [updateState . 5]
}

17http://groups.inf.ed.ac.uk/links/quick-help.html#pairs__tuples__and_records

32

http://groups.inf.ed.ac.uk/links/quick-help.html#pairs__tuples__and_records

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

For now I omit the definition of mainLoop ([updateState.1]). I will describe
this function later.

Right after the definition, the updateState function is run in a separate pro-
cess:

var updateProcId = spawn { updateState () } ;

I will refer to it as the update process. The first instruction it executes is recv
([updateState.2]), which makes it wait until there is a message in its mailbox.
This is because it should not start executing until the user started (initialized) the
game by clicking on the canvas element that it uses.

Next, I define two functions for handling input:

fun onKeyDown(e) {
updateProcId ! (KeyDown(getCharCode (e)) : Input) ;

}

fun onKeyUp(e) {
updateProcId ! (KeyUp(getCharCode (e)) : Input) ;

}

They send messages of type Input – all messages in Links are statically typed
– to the update process. The Input type is defined as follows:

typename Input = [| KeyUp : Int | KeyDown : Int | CarryOn |] ;

This means that it is a variant type18, which can be any of the three things:
the constant CarryOn, an Int with a KeyDown label, or an Int with a KeyUp label.
The update process can only receive messages of this type.

And then the initialization function, which is invoked when the user wishes to
start the game:

fun i n i t i a l i z e () {
var _ = recv () ; # wait u n t i l a message i s r e c e i v ed

[i n i t i a l i z e . 1] :
jsSetOnEvent (getNodeById (con ta ine r Id) ,

"keydown" , onKeyDown , t rue) ;
jsSetOnEvent (getNodeById (con ta ine r Id) ,

"keyup " , onKeyUp , t rue) ;

var _ = domSetStyleAttrFromRef (
getNodeById (" i n f o ") ,
" d i sp l ay " , "none ") ;

updateProcId ! CarryOn
}

18http://groups.inf.ed.ac.uk/links/quick-help.html#polymorphic_variants

33

http://groups.inf.ed.ac.uk/links/quick-help.html#polymorphic_variants

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

Immediately after definition I spawn it as a separate process (the initialize
process),

var i n i t i a l i z e P r o c I d = spawn { i n i t i a l i z e () } ;

which will receive a message when the user clicks the main canvas element.
jsSetOnEvent ([initialize.1]) is a wrapper for addEventListener19, which is

a JavaScript method for registering event handlers. It is defined as follows:

f unc t i on _jsSetOnEvent (node , event , fn , capture) {
node . addEventListener (

event ,
f unc t i on (e) { fn (e , _idy) } , // [j s . 1]
capture

) ;
r e turn ;

}

The second argument of addEventListener must be a callback that takes
one argument (the event), but fn is a function of two arguments – it is a Links
function, and as such uses continuation-passing style – its second argument is its
continuation. This is why it is wrapped in an anonymous function ([js.1]) in which
we pass it an identity continuation, which does nothing:

func t i on _idy (x) { re turn ; }

Once we have added the event listeners, every time there is a keyup or keydown
event (user presses or releases a key), our onKeyUp or onKeyDown functions will be
called with the event object. They in turn will send a message with the integer
character code (obtained from the event using getCharCode) wrapped in proper
type to the update process, which is responsible for handling input.

The call to domSetStyleAttrFromRef causes the message that encourages the
user to click on the canvas and start the game to disappear. It will be replaced by
the game screen.

The last initialization step is waking up the update process, by sending it the
CarryOn message. This will start the mainLoop ([updateState.3]), which will run
until user requests to restart the game.

4.3.5 Restarting the game

When mainLoop terminates, the next line ([updateState.4]) will cause the up-
date process to send a CarryOn message to itself if no messages are waiting in its
mailbox. Then ([updateState.5]) the update process will recurse, going back to
[updateState.2]. Since it has at least one message waiting in the mailbox, it will
carry on to [updateState.3], running the mainLoop with its initial arguments
again, effectively restarting the game.

19https://developer.mozilla.org/pl/docs/DOM/element.addEventListener

34

https://developer.mozilla.org/pl/docs/DOM/element.addEventListener

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

4.3.6 Main game loop

The mainLoop function of the update process ([updateState.1]) handles user in-
put ([mainLoop.1]), game logic ([mainLoop.2]) and rendering ([mainLoop.3]).

It is defined as follows:

fun mainLoop (gameState : Game, dt , lastTime ,
fp s In f o , inputState) {

var now = cl i entTime () ;
var dt = dt +.

fmin (1 . 0 ,
intToFloat (now − lastTime) / . 1 0 0 0 . 0) ;

fun r e c e i v e Inpu t (inputSoFar : [Input]) {
i f (haveMail ()) {

r e c e i v e Inpu t (recv () : : inputSoFar)
} e l s e inputSoFar

}

var i = r e c e i v e Inpu t (inputState) ; # [mainLoop . 1]

var (gameStatePrim , dtPrim) =
updateLogic (dt , gameState , i) ; # [mainLoop . 2]

i f (gameStatePrim . metaState == Restart)
()

e l s e i f (f l oa tEq (dtPrim , dt)) {
don ’ t redraw i f the re were no l o g i c updates
mainLoop (gameStatePrim , dtPrim , now , fp s In f o , i)

} e l s e {
mainLoop (

i f (gameStatePrim . metaState == Download)
(gameStatePrim with metaState = Run)

e l s e gameStatePrim ,
dtPrim ,
now ,
draw (gameStatePrim , lastTime , now , f p s I n f o) ,

[mainLoop . 3] draw & get new f p s I n f o
[] # r e s e t input

)
}

}

35

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

Its arguments are:

• gameState of type Game, which is defined more or less as:

typename Game = (pi l lman : Ent i tyDescr ip t ion ,
roge r : Ent i tyDescr ipt ion ,
. . .
p i l lCount : Int , s c o r e : Int ,
l i v e s : Int , l e v e l : Int ,
s t a t e : GameState ,
metaState : GameMetaState) ;

This type describes the whole game state – including the state of game ob-
jects, which have the type EntityDescription, which in turn describes the
state of a particular game entity (the player or an enemy) – its position,
speed, direction, etc. The GameState and GameMetaState types are defined
as:

typename GameMetaState = [| Run | Download |
Restart |] ;

typename GameState = [| On | Eaten | Eaten2 |
Ate | Over | NextLevel |
NextLevel2 | Won |] ;

They represent all possible game states.

GameMetaState is more general and it pertains to the state of the whole
application. Run means that the main loop is being executed normally, in
which case the GameState is relevant – it represents the state of a singular
game play.

• dt of type Float represents the time (in milliseconds) since the last update
of the game logic.

• lastTime of type Float represents the time (in milliseconds) of the last
invocation of mainLoop.

• fpsInfo is a record that stores data related to calculating frame rate infor-
mation.

• inputState of type [Input] is a list of player’s inputs waiting to be processed
by the game logic.

36

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

The game logic updates ([mainLoop.2]) with a fixed time step [10]. This is
handled in the updateLogic function:

fun updateLogic (dt , gameState : Game, i) {
i f (dt > step) {

var gameState =
mainGameLogic (gameState , i) ;

updateLogic (dt −. step , gameState , [])
} e l s e (gameState , dt)

}

It updates the game state (by calling mainGameLogic with the current game
state and input) the number of times determined by the time since the last update.
step represents the value of 1

60
of a second, enforcing the desired frame rate (60

FPS):

var s tep = 1 .0 / . 6 0 . 0 ;

4.3.7 Game logic

This is how the mainGameLogic function is defined:

fun mainGameLogic (gameState : Game, i) {
var gameState = handleKeys (i , gameState) ;

[mainGameLogic . 1]

[mainGameLogic . 2] he lpe r f unc t i on s
fun gho s tCo l l i s i o n (ghost) {

c i r c l e C i r c l e C o l l i s i o n (
(gameState . p i l lman . po s i t i on , pillmanR) ,
(ghost . po s i t i on , ghostR))

}
. . .

switch (gameState . s t a t e) { # [mainGameLogic . 3]
case On −>

a l l depending on s t a t e :

a i updating func t i on s . . .
planet changing cond i t i on s . . .
d i r e c t i o n changing cond i t i on s . . .

update e n t i t i e s . . .
handle p i l l c o l l i s i o n s . . .
handle ghost c o l l i s i o n s . . .
check l e v e l up cond i t i on s :

37

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

var gameState =
i f (gameState . p i l lCount == pi l lCount)

(gameState with
s t a t e = NextLevel ,
t imeout = 60)

e l s e gameState ;

gameState

case Over −>
on game over
gameState

other s t a t e s . . .

case NextLevel2 −> # animate
update game s t a t e ac co rd ing ly . . .

i f (gameState . l e v e l > 255)
Victory cond i t i on
(gameState with s t a t e = Won)

e l s e gameState

case _ −> # any other s t a t e means do nothing
gameState

}
}

It takes the current gameState and the current input state as its arguments
and returns a new game state.

Apart from defining some helper functions ([mainGameLogic.2]), it processes
the user input ([mainGameLogic.1]) and is responsible for transitioning the game
from one state to the next ([mainGameLogic.3]). The main state is On, in which
the normal game logic is executed: updating game objects (the player and the
Artificial Intelligence (AI)) handling collisions, and other transformations of the
game state dependent on specific conditions. Other states include the transition
between one game level to the next or the state of the game being over.

38

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

4.3.8 Rendering

All the graphics in the games I made is rendered on a HTML5 canvas element20. I
use the basic interface available in JavaScript for manipulating it. In order for it to
work in Links, I added all the necessary function “declarations” at the compiler level
as for now the language has no working foreign function interface21 for JavaScript.

Below I present the list of functions mentioned in the previous paragraph:

jsSave ,
j sRes to re ,
jsGetContext2D ,
j sF i l lT ex t ,
jsCanvasFont ,
jsDrawImage ,
j sF i l lR e c t ,
j s F i l l C i r c l e ,
jsBeginPath ,
jsClosePath ,
j s F i l l ,
jsArc ,
jsMoveTo ,
jsLineTo ,
jsLineWidth ,
j s S ca l e ,
j sTrans l a t e ,
j s S t r okeS ty l e ,
j sS t roke ,
j s S e tF i l lCo l o r ,
j sClearRect ,
jsCanvasWidth ,
jsCanvasHeight ,
jsSaveCanvas

I will call this my canvas library for Links. All these functions are wrappers for
JavaScript canvas manipulating methods that operate on context objects. Their
names are analogous to those from JavaScript; each has a js- prefix.

For example, the function jsFillRect is wraps the fillRect method of a
context object from JavaScript:

f unc t i on _j sF i l lRec t (ctx , x , y , width , he ight) {
ctx . f i l l R e c t (x , y , width , he ight) ;

}

20http://www.w3schools.com/tags/ref_canvas.asp
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

21http://www.c2.com/cgi/wiki?ForeignFunctionInterface

39

http://www.w3schools.com/tags/ref_canvas.asp
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
http://www.c2.com/cgi/wiki?ForeignFunctionInterface

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

This function is then used in Links as follows:

• First we get the context object for our canvas element (the value of its id
attribute is stored in canvasNodeId in this example):

var ctx = jsGetContext2D (getNodeById (canvasNodeId)) ;
. . .

• Then, if we want to draw a rectangle (for example in a rendering function of
our game), we pass this object as an argument to our function:

j s F i l l R e c t (ctx , 0 . 0 , 0 . 0 , 10 . 0 , 1 0 . 0) ;

So the difference is that we input the context object to the function as the first
argument. The rest of the arguments are the same as in the original fillRect
method22.

Implementation of all the wrappers in the canvas library can be found in jslib.js
file (attached to this thesis – see Appendix A).

In the main loop the drawing is done with the draw function ([mainLoop.3]):

fun draw (gameState : Game, lastTime , now , f p s I n f o) {
prepare canvas
var (mainCanvas , dispCanvas) =

i f (s t r ingEq (domGetStyleAttrFromRef (
getNodeById (canvasId) , " d i sp l ay ") ,
"none ") | |

not (doub leBuf f e r)) # [draw . 5]
(canvasId , canvas2Id)

e l s e (canvas2Id , canvasId) ;
[draw . 1] double bu f f e rn i ng 1

var ctx = jsGetContext2D (getNodeById (mainCanvas)) ;

de f i n e c o l o r s
var p i l lmanColor = "#cc4 " ;
var pup i lCo lo r = "#111";
. . .

. . .

drawing funct i ons , depend on s t a t e
fun drawPillman (pi l lman , gameState) {

[draw . 3]
}
. . .

22http://www.w3schools.com/tags/canvas_fillrect.asp

40

http://www.w3schools.com/tags/canvas_fillrect.asp

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

#
DRAWING PART
#

var drawOffset = (x = 108 .0 , y = 2 4 . 0) ;
j sSave (ctx) ;
j sT ran s l a t e (ctx , drawOffset . x , drawOffset . y) ;

draw the game area . . .
draw the connec t i ons between p lane t s . . .

lsMapIgnore over connec t ions . . .
h i gh l i g h t the connect ion

which pi l lman c o l l i d e s with . . .
draw ghost p lanet bottom lay e r . . .
draw the p l ane t s . . .
draw ghost p lanet top l ay e r . . .
draw p i l l s . . .
don ’ t draw the r e s t i f game over . . .

h i gh l i g h t the cur rent p lanet . . .
draw Pil lman . . .
draw ghost s . . .
draw po r t a l s . . .

j sRe s t o r e (ctx) ;

draw the HUD
j s S e tF i l l C o l o r (ctx , t extCo lor) ;
. . .
j s F i l l T e x t (ctx , " Score : " ^^

intToStr ing (gameState . s c o r e) , 10 . 0 , 4 0 . 0) ;
. . .

c a l c u l a t e and draw new f p s I n f o :
var dFps = 1000.0 / .

(intToFloat (now − lastTime) +. 1 . 0) ;
j s S e t F i l l C o l o r (ctx , t extCo lor) ;
var f p s I n f o = drawFps (ctx , f p s In f o , dFps) ; # debug

double bu f f e r i n g
i f (doub leBuf f e r) # [draw . 2] double bu f f e r i n g 2

swapBuffers (mainCanvas , dispCanvas)
e l s e () ;

[draw . 4] save canvas to f i l e . . .
f p s I n f o # return

}

41

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

It inputs the following arguments:

• gameState of type Game – current game state.

• lastTime of type Float represents the time (in milliseconds) of the last
invocation of mainLoop.

• now of type Float represents the time (in milliseconds) of the current invo-
cation of mainLoop.

• fpsInfo is a record that stores data related to calculating frame rate infor-
mation.

Double buffering

Double buffering is a technique commonly used in computer (game) graphics
which, among other things, reduces or eliminates flickering and other drawing
artifacts [16].

In my applications it is implemented with two canvas elements serving as
buffers. Both canvases are displayed at the same position on the screen, but only
one is visible at a time. The drawing is done on the invisible canvas. After it is
completed, the visibility of the canvases is swapped – the visible one is hidden and
the invisible one is displayed23.

At the beginning of the draw function, the canvas to draw on is determined
([draw.1]) by checking its display attribute. The swapping of the buffers is done
after all drawing by the swapBuffers function ([draw.2]):

fun swapBuffers (mainCanvas , dispCanvas) {
var ctx = jsGetContext2D (getNodeById (dispCanvas)) ;
jsDrawImage (ctx , getNodeById (mainCanvas) , 0 . 0 , 0 . 0) ;
var _ = domSetStyleAttrFromRef (getNodeById (mainCanvas) ,

" d i sp l ay " , " block ") ;
var _ = domSetStyleAttrFromRef (getNodeById (dispCanvas) ,

" d i sp l ay " , "none ") ;
c l e a r (ctx)

}

The doubleBuffer flag ([draw.2], [draw.5]) controls whether double buffering
is on or off.

draw defines some auxiliary functions for drawing the game objects and their
elements as well as some values (like colors) that describe their appearance. What
is drawn at the moment depends on current game state.

23Normally browsers try to do double buffering automatically – as explained in [23] – but it
won’t work for Links, because the JavaScript generated for the drawing makes asynchronous calls
all the time, so to avoid flickering of the canvas I had to implement the mechanism “manually”.

42

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

For example drawPillman, a function ([draw.3]) that draws the player char-
acter, has in its definition the following code:

i f (gameState . s t a t e == Eaten2) {
draw the f i n a l frame o f the eaten animation . . .
jsLineWidth (ctx , 1 . 0) ;
j s S t r o k eS t y l e (ctx , p i l lmanColor) ;
use jsBeginPath , jsMoveTo , jsLineTo , j sClosePath . . .
j s S t r ok e (ctx) ;

}

I use only the basic canvas primitives (circles, rectangles, etc.) and drawing
functions and no external graphic files in my games’ rendering (which means that
it is essentially procedural vector graphics)24.

The game area is drawn first, with various elements and game objects are drawn
in a specific order. Drawing ends with the HUD (heads-up display) and some
debugging information about frame rate. The latter is handled by the drawFps
function:

fun drawFps (ctx , f p s In f o , dFps) {
var f p s I n f o =

(f p s I n f o with
frameCount = f p s I n f o . frameCount + 1 ,
dFps = dFps) ;

update lowest and h ighe s t r e g i s t e r e d frame ra t e
c a l c u l a t e the average frame ra t e
. . .

f p s I n f o
}

I also added a function that saves the image data from a canvas to a file. This
allows the player to make “screenshots” of the game area while playing.

The function is defined in JavaScript as follows:

f unc t i on _jsSaveCanvas (canvas , node , mime) {
var imageData = canvas . toDataURL(mime) ;
node . h r e f = imageData ;

}

24 The use of only the basic canvas manipulating functions could allow for integration with a
WebGL renderer with canvas fallback, like Pixi.js:
http://www.pixijs.com/

43

http://www.pixijs.com/

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

It is used in the draw function like so ([draw.4]):

var gameState = i f (gameState . metaState == Download) {
sc r e en sho t
var downloadNode = getNodeById (" download ") ;
var imageName = gameName ^^ "−" ^^

intToStr ing (c l i entTime ()) ^^ " . png " ;
var _ = domSetAttributeFromRef (downloadNode ,

"download " , imageName) ;
r ep l a c eCh i ld r en (

<#>
{stringToXml (

"Cl i ck to download the snapshot as ")}

{stringToXml (imageName)}

</#>,
downloadNode) ;

jsSaveCanvas (getNodeById (mainCanvas) , downloadNode ,
" image/png ") ;

(gameState with s t a t e = On)
}
e l s e gameState ;

If the player presses a key, the metaState of the game is set to Download, which
causes the current frame to be saved to file. Actually the image data is encoded
with base64 encoding into an URL using the toDataURL method25. This URL is
then written to a href attribute of a HTML link node. This link can be clicked
by the user to download the image file. The Links code generates the name for the
file and writes it to the value of the node ([page.1] – see 4.3.9).

25https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement.toDataURL

44

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement.toDataURL

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

4.3.9 Web page structure

The output of the main function is the web page, which contains the user interface:

page
<html>

<head>
<sty l e >

/∗ . . . ∗/
#{stringToXml (canvasId)} {{

d i sp l ay : b lock ;
p o s i t i o n : abso lu t e ;
top : 0px ;
l e f t : 0px ;

}}
</s ty l e >
</head>

<body>
<div id="conta ine r">

<h1>Pillman</h1>

<div id="{conta ine r Id }" tabindex="1"
l : onfocus="{ i n i t i a l i z e P r o c I d ! 0 ; }">
<canvas id="{canvas2Id }"

width="{ f l o a tToSt r i ng (
canvasWidth)}"

he ight="{ f l o a tToSt r i ng (
canvasHeight)}">

</canvas>
<canvas id="{canvasId }"

width="{ f l o a tToSt r i ng (
canvasWidth)}"

he ight="{ f l o a tToSt r i ng (
canvasHeight)}">

</canvas>
<div id=" i n f o">

Cl i ck t h i s canvas to s t a r t .
</div>

</div>
<div id="msg"></div>
The canvas above must be focused

f o r the keyboard input to work .

[SPACEBAR] c on t r o l s Pil lman

45

CHAPTER 4. WEB GAME DESIGN AND IMPLEMENTATION

<!−− . . . −−>
<a id="download"

tabindex="2" download="">
 <!−− [page . 1] −−>

</div>
</body>

</html>

Its structure and appearance is defined with HTML and CSS. The HTML is
directly embedded into Links source with XML quasiquotes26. Inside these, we may
evaluate Links expressions, by surrounding them with curly braces. In the above
case, we see that values of some identifiers and attributes are determined this way.
User interaction with XML elements is handled with l-event attributes27:

<div id="{conta ine r Id }" tabindex="1"
l : onfocus="{ i n i t i a l i z e P r o c I d ! 0 ; }">

Here, the l:onfocus l-event attribute is used to send a message to the initialize
process when the user clicks in the area that contains the canvas element, on which
the game screen is displayed. This effectively starts the game.

26http://groups.inf.ed.ac.uk/links/quick-help.html#xml_quasiquotes
27http://groups.inf.ed.ac.uk/links/quick-help.html#handling_user_actions

46

http://groups.inf.ed.ac.uk/links/quick-help.html#xml_quasiquotes
http://groups.inf.ed.ac.uk/links/quick-help.html#handling_user_actions

Chapter 5

Optimizations and benchmarking

Running the games described in Chapter 4 with acceptable frame rate required
optimizations.

After analyzing the performance of the Links language system, I concluded
that a good starting point for optimizations was the jslib.js library – which is the
main part of the runtime of the language (see Chapter 3 for description). I began
introducing optimizations to the library, until the desired frame rate was achieved.

This chapter describes the optimizations and the ways of carrying out measure-
ments and obtaining performance data.

5.1 Initial notes

Links’ debug mode was off during all tests (debug=off in the config file1). I made
sure not to have any extra applications running in the background while testing
(aside from a text editor, file manager and a terminal emulator, which were run-
ning constantly). All tests were performed using Chromium 36.0.1985.143, unless
specified otherwise.

I generated hundreds of charts, from which I selected a representative one for
each optimization.

5.2 The benchmark application

In order to quantify the effectiveness of my optimizations I wrote an application2

(based on the game "framework" that I developed while implementing the games
– see Chapter 4) in Links, which displays a chart of instantaneous frame rate for
every frame. Numbers of frames are on the X axis and the instantaneous frame
rate is on the Y axis.

1For description of the config file, please refer to Links’ INSTALL document:
https://github.com/links-lang/links/blob/sessions/INSTALL
Section: RUNNING WEB APPLICATIONS et seq.

2see the file performance-frozen.links attached to this document – described in Appendix A

47

https://github.com/links-lang/links/blob/sessions/INSTALL

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

The application is itself very resource consuming, though all it does is processing
600 samples of frame rate data and drawing on the screen. I did not make attempts
at optimizing it, though, because that is irrelevant – it is enough that the same
application is used unchanged for every measurement.

The benchmark’s implementation follows a very similar structure to the one
described in Chapter 4, 4.3, except that the “logic” is obviously simpler as the
application is not very interactive. Most of the computation performed by the
application is essentially contained within its draw function:

fun draw (datapo int s : Datapoints , lastTime ,
now , fp s In f o , chartParams) {

prepare canvas . . .

HELPER FUNCTIONS
fun s ca l ePo in t ((x , y))
fun drawChartLine (ctx , co lo r , y , msg) . . .
fun markYAxis (f r a c t i o n) . . .
fun p lo tPo int (p) . . .

prepare datapo int s
var o f f s e t = f p s I n f o . frameCount ;
var dFps = 1000.0 / .

(intToFloat (now − lastTime) +. 1 . 0) ;

var l e f t P o i n t s = take (o f f s e t , datapo int s) ; # [1]

var middlePoint = [(o f f s e t + 1 , dFps)] ;

var datapointsLength = length (datapo int s) ;
var d i f f =

f l oa tTo In t (chartParams . xSca le) − datapointsLength ;

var r i gh tPo in t s =
drop (o f f s e t + 1 ,

take (f l o a tTo In t (chartParams . xSca le) ,
datapo int s)) ; # [2]

d i sp l ay debug i n f o
j sF i l l T e x t . . .

draw chart r e f e r e n c e l i n e s
drawChartLine . . .

draw x ax i s (frame numbers) . . .

48

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

draw datapo int s
jsBeginPath (ctx) ;
var f i r s t P o i n t = sca l ePo in t (hd(datapo int s)) ;

jsMoveTo (ctx ,
intToFloat (f i r s t P o i n t . 1) , f i r s t P o i n t . 2) ;

var (midPointx , midPointy) =
sca l ePo in t (middlePoint ! ! 0) ;

j s S e t F i l l C o l o r (ctx , "#222");
var p l o t t edLe f tPo in t s =

map(plotPoint , l e f t P o i n t s) ; # [3]

c a l c u l a t e add i t i ona l data f o r sav ing to f i l e
i f (chartParams . snap) . . .

j s S e t F i l l C o l o r (ctx , "#2a2 ") ;
i gno r e (map(plotPoint , middlePoint)) ;

j s S e t F i l l C o l o r (ctx , "#888");
i gno r e (map(plotPoint , r i gh tPo in t s)) ; # [4]
j s S t r ok e (ctx) ;

draw y ax i s (FPS)
markYAxis . . .

c a l c u l a t e and draw new f p s I n f o
var f p s I n f o =

drawFps (ctx , f p s In f o , dFps , chartParams) ;

new datapo int s
var datapo int s =

l e f t P o i n t s ++ middlePoint ++ r i gh tPo in t s ; # [5]

double bu f f e r i n g
i f (doub leBuf f e r)

swapBuffers (mainCanvas , dispCanvas)
e l s e () ;

save canvas to f i l e
i f (chartParams . snap) . . .

(f p s In f o , datapo int s) # return
}

49

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

The most computationally or memory-intensive parts are marked with com-
ments: [1], [2], [3], [4], [5]. The first argument of the function is the list of 600
datapoints. This list is processed with functions such as take, drop, map and ++
(concatenate), which causes a lot of copying (see Chapter 3, 3.4.3). map also means
that a large number of function calls (one for each data point) is performed.

The benchmark measures its own frame rate, but the changes of it caused by the
optimizations are reflected in changes of frame rate in the implemented games. This
is because both the games and the benchmark essentially work in the same way.
The computations that have the biggest impact on performance in the benchmark
have also the biggest performance impact in games. See 5.7 for demonstration of
the in-game performance after optimizations.

With this application, I determined the frame rate after each optimization
and compared it to the baseline frame rate, which was measured before these
optimizations.

The chart-generating application works like this: every frame the highest and
the lowest registered frame rate is updated if needed. Every 600 frames, which I
call an iteration, the average frame rate is calculated and collecting samples starts
over. The samples from the previous iteration are marked with gray dots and the
samples from the current iteration are marked with black dots. This is an example
chart illustrating this:

Figure 5.1: An example chart

50

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Every chart consists of:

• X axis (frames): from 0 to 600, a mark every 60 frames

• Y axis (instantaneous frame rate): from 0 to the highest registered frame
rate, marks at 25, 50 and 75% of the highest frame rate

• Blue line3 (“average FPS”) – indicating the average frame rate (calculated
over 600 frames from the previous iteration)

• Green line (“reference FPS”) – user-defined reference frame rate. Can be
moved with up and down arrow keys. Below this line are three values depen-
dent on its position:

– Frames above – how many samples calculated so far in this iteration lie
above the reference line

– Frames below – how many samples lie below the line

– Ratio – the number of frames above the line divided by the number of
frames below

• Red line (“lowest FPS”) – indicates the lowest instantaneous frame rate

• Text at the top:

– FPS – current instantaneous frame rate

– highest FPS – highest instantaneous frame rate

– granularity – the value of _yieldGranularity (constant)

– yieldCount – current value of _yieldCount; in the charts without the
first optimization this value is very high as it is incremented every time
_yield or _yieldCont is called (eventually it overflows, which may
cause an unplanned stack clear); after the optimization the value is
reset when it reaches the value of _yieldGranularity

– double buffering – indicates whether double buffering4 is on or off

– description – the second line from the top describes the chart

4http://en.wikipedia.org/wiki/Multiple_buffering#Double_buffering_in_
computer_graphics

4Note: the colors of the lines are irrelevant and are there only to aid in reading of the charts.
When viewing the black and white version of this thesis, please look at the captions above the
lines – for example the blue line has the “average FPS” caption above it.

51

http://en.wikipedia.org/wiki/Multiple_buffering#Double_buffering_in_computer_graphics
http://en.wikipedia.org/wiki/Multiple_buffering#Double_buffering_in_computer_graphics

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.3 The unoptimized version
Before any optimizations, the average frame rate in the benchmark application was
about 1.6 FPS. This is illustrated on the following chart:

Figure 5.2: The unoptimized version

In the next section, when calculating absolute improvement I assume 1.6 FPS
as the baseline.

52

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4 Basic optimizations
This section describes four basic optimizations that I attempted before moving on
to a little more sophisticated ones (see 5.5).

5.4.1 Optimized _yield and _yieldCont

Removing some calls to debugging functions and getting rid of one modulo oper-
ation and one negation in the bodies of _yield and _yieldCont (see also 5.5.11)
improved the performance a bit. In fact the improvement is much more significant
than what comparing the next chart to the previous may indicate as we will see
when we combine this optimization with the next one.

Figure 5.3: First optimization – faster _yield*

Average frame rate is 2 FPS. Absolute improvement: 25 %5.
We can start to see the pattern described in section 5.4.10: the frame rate

oscillates between some higher and lower value. It drops almost every third frame.
5Note that the these percentages have to be interpreted with caution as frame rate is not a

particularly stable parameter to measure. We can tell that the optimization was effective only if
the increase is very significant and/or when comparing and combining with other optimizations.

53

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.2 Faster setTimeout

All calls to setTimeout with the second argument of 0 were replaced by a call to
setZeroTimeout6.

setTimeout effectively has a minimum delay of about 4 ms7. setZeroTimeout
does not have that limitation.

It is defined as follows:

(func t i on () {
var t imeouts = [] ;

var messageName = "0TMsg" ;

func t i on setZeroTimeout (fn) {
t imeouts . push (fn) ;
window . postMessage (messageName , "∗") ;

}

func t i on handleMessage (event) {
i f (event . source == window &&

event . data == messageName) {
event . stopPropagat ion () ;
i f (t imeouts . l ength > 0) {

t imeouts . s h i f t () () ;
}

}
}

window . addEventListener ("message " ,
handleMessage , t rue) ;

window . setZeroTimeout = setZeroTimeout ;
}) () ;

It uses the window.postMessage8 method, which makes it possible to execute
the fn callback immediately9.

6Implementation from:
http://dbaron.org/log/20100309-faster-timeouts

7https://developer.mozilla.org/en/docs/Web/API/window.setTimeout#Minimum.2F_
maximum_delay_and_timeout_nesting

8https://developer.mozilla.org/en-US/docs/Web/API/window.postMessage
9https://developer.mozilla.org/en-US/docs/Web/API/window.setImmediate#Notes

54

http://dbaron.org/log/20100309-faster-timeouts
https://developer.mozilla.org/en/docs/Web/API/window.setTimeout#Minimum.2F_maximum_delay_and_timeout_nesting
https://developer.mozilla.org/en/docs/Web/API/window.setTimeout#Minimum.2F_maximum_delay_and_timeout_nesting
https://developer.mozilla.org/en-US/docs/Web/API/window.postMessage
https://developer.mozilla.org/en-US/docs/Web/API/window.setImmediate#Notes

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Figure 5.4: Second optimization – setZeroTimeout

Average frame rate is 8.6 FPS. Absolute improvement: 437 %.
A major increase. This is one of the most significant optimizations. Poten-

tially saving up to 4 ms on each call to _yield* significantly boosted the overall
performance.

The oscillation of the frame rate is more apparent when we combine this op-
timization with the previous – so not on this chart. This is most likely because
the amount of time spent yielding each frame is much longer without the _yield*
optimization and garbage collecting time stays roughly the same.

This is probably also the reason for the slightly curved shape of the outline of
the data points on the chart.

55

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.3 Increased _yieldGranularity

I changed the value of _yieldGranularity from the original 60 to 260.

Figure 5.5: Third optimization – calling setTimeout less often

Average frame rate is 4.2 FPS. Absolute improvement: 163 %.
Increasing _yieldGranularity obviously has an impact on performance as

setTimeout is not called so often, which means less frequent clearing of the
JavaScript call stack. But this works up to a point10 and the maximum value
of _yieldGranularity differs between applications and browsers.

10Because as _yieldGranularity grows the amount of garbage being accumulated also grows
(see Figure 5.11)

56

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.4 Turning off double buffering

As described in Chapter 4, 4.3.8 the rendering in my applications is done with
double buffering.

Turning the mechanism off caused virtually no change in frame rate:

Figure 5.6: Fourth optimization – double buffering off

Average frame rate is 1.7. Absolute improvement: 6 %.
Almost no effect compared to the original. On the other hand doing similar

tests with the Breakout clone shows that turning off double buffering has a more
significant effect.

This is likely because in the game, there is much less calls to canvas drawing
functions. There is at least 600 rectangles being drawn in the benchmark each
frame – one for every data point. So in this case swapping buffers and redrawing
the ready-made bitmap is a smaller fraction of the drawing time.

57

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.5 First two optimizations combined

When I applied the _yield (5.4.1) and setZeroTimeout (5.4.2) optimizations
together I obtained the following result:

Figure 5.7: First two optimizations combined

Average frame rate is 27 FPS. Absolute improvement: 1588 %.
Great improvement. The oscillation of the frame rate is clearly apparent.

58

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.6 First three optimizations combined

I combined the first two optimizations (5.4.5) and increased _yieldGranularity
as in 5.4.3.

Figure 5.8: First three optimizations combined

Average frame rate is 29 FPS. Absolute improvement: 1713 %.
Improvement over the first two optimizations: 7 %.
An increase in _yieldGranularity bumps up the frame rate a bit, but not

very significantly.
Note: we can observe that besides oscillating, the frame rate is also slowly going

down with time. See 5.4.10 for explanation.

59

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.7 First two optimizations without double buffering

The _yield and setZeroTimeout (5.4.5) optimizations were also tested with dou-
ble buffering turned off.

Figure 5.9: First two and the fourth optimization combined

Average frame rate is 24 FPS. Absolute improvement: 1400 %.
No improvement over the two optimizations alone.

60

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.8 Other simple optimizations

Other, less significant basic optimizations I tried were:

• Using a much (up to 10x) faster implementation of queues11 – I tested that
with setZeroTimeout (which uses a queue for storing functions to be called)
and with _send (! in Links’ syntax) and recv (which use queues for process
mailboxes), but it turned out not to be a significant improvement, because of
the generally small size of the queues. This faster implementation shows its
advantages when used with bigger queues; for small ones the gain is cancelled
out by the overhead.

• As some benchmarks show12, the currently used implementation of queues
based on lists and unshift-pop methods can be up to 2 times slower than
the implementation based on push-shift in Firefox and Opera. On the other
hand in Chromium the unshift-pop seems to generally be a bit faster. So in
this case I decided not to optimize.

• I replaced the use of new Date().getTime() with Date.now() as the former
way of getting the current time unnecessarily creates a Date object.

11http://code.stephenmorley.org/javascript/queues/
12http://jsperf.com/queuing-push-shift-vs-unshift-pop

61

http://code.stephenmorley.org/javascript/queues/
http://jsperf.com/queuing-push-shift-vs-unshift-pop

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.9 Debugging

A thing that turned out to be significant for better performance was making sure
that the debug functions were not called when the debug mode was off. The main
debugging functions in Links are:

DEBUG. a s s e r t ,
DEBUG. assert_noisy ,
_debug ,
_dumpSchedStatus

I found that _dumpSchedStatus was causing a very significant slowdown, un-
necessarily executing code containing loops every time _send was called. This hap-
pened even if Links was not in debug mode as the function did not take DEBUGGING
flag into account:

f unc t i on _dumpSchedStatus () {
_debug("−−−−−−−−\nMailbox s t a tu s : ") ;
f o r (var i in _mailboxes) {

i f (_mailboxes [i] . l ength > 0)
_debug(" ; pid " + i + " : " +

_mailboxes [i] . l ength + " msgs wai t ing ") ;
}
var blockedPids = "" ;
f o r (var i in _blocked_procs) {

i f (b lockedPids != "") blockedPids += " , " ;
b lockedPids += i

}
i f (b lockedPids != "")

_debug(" ; blocked proce s s IDs : " +
blockedPids + " . ") ;

}

It is important to remember that to ensure better performance in release ver-
sions of not just Links, but any applications, debugging should be turned off.

Implementing debug functions so that they have as small an impact on perfor-
mance as possible is also reasonable. Debug functions should not be called unnec-
essarily in performance-critical code.

62

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.4.10 The garbage problem

There is a clear pattern in the optimized versions: every n frames the frame rate
drops significantly and it is slowly going down with time – this is caused by the
garbage collector collecting large amounts of accumulating garbage periodically.
The green line on every chart may be helpful in estimating the n.

The next two charts were made using a modified version of the benchmark
application.13.

To confirm that the GC is the cause of drops in frame rate, I extended Links
with a function that allows invoking Chromium’s garbage collector on demand. I
put calls to this function after code that I thought was responsible for generating
a lot of garbage – calling map on a big list. I forced 2 GC invocations per frame.
This indeed stabilized the frame rate:

Figure 5.10: Invoking GC after mapping a function over a big list to clean up
stabilizes the frame rate; optimizing the implementation of map may significantly
boost performance

13Defined in performance2.links file. See Appendix A for the list and description of attached
files.

63

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

When I increased _yieldGranularity too much, the pattern on the chart
changed – GC was invoked more often. Probably because the bigger the call stack
grows, the more garbage related to the data on the stack accumulates as for ex-
ample the memory referenced from the stack cannot be reclaimed until the stack
is cleared.

Figure 5.11: Too high _yieldGranularity results in more GC slowdowns

64

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5 Advanced optimizations and profiling
This section describes various other optimizations that I attempted. It also includes
a comparison of the benchmark with a native JavaScript implementation.

5.5.1 Profiling

I used profiling tools available in the Chromium browser (Chrome Dev Tools14)
to examine memory usage in my applications as well as the Firebug extension in
Firefox15 to profile function execution times.

In the remaining part of this Chapter I am referring to profiling data to describe
my optimizations. Below I provide a brief instruction on how to read the data.

This is an example heap timeline chart:

Figure 5.12: Example timeline chart: 1 minute, 10.8-90.2 MB

The above example timeline chart shows how heap size changes in time. The
caption below contains its title and information describing the chart: the time span
of the measurement (here 1 minute), the lowest (here 10.8 MB) and the highest
(here 90.2 MB) registered heap size. Every timeline chart has this information in
the caption.

14https://developer.chrome.com/devtools/docs/timeline
https://developer.chrome.com/devtools/docs/heap-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling

15http://getfirebug.com/whatisfirebug

65

https://developer.chrome.com/devtools/docs/timeline
 https://developer.chrome.com/devtools/docs/heap-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
http://getfirebug.com/whatisfirebug

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

This is an example heap allocation record with important elements highlighted
and described:

Figure 5.13: Example heap allocation record; note that this was recorded over
about 30 seconds

The “reference” line and size are important as they are good for quick compar-
isons.

Along with the heap allocation record I will also show some heap object statis-
tics:

Figure 5.14: Example heap object statistics

66

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

The meaning of the columns is16:

• Constructor represents all objects created using this constructor.

• Objects Count displays the number of object instances.

• Shallow Size displays the sum of shallow sizes of all objects created by a
certain constructor function. Shallow size means the memory that is held
directly by the object itself.

• Retained Size displays the maximum retained size among the same set of
objects. Retained size means the size of memory held by an object and its
dependent objects (which are deleted along with the object when the memory
is freed).

Shallow and retained sizes are in bytes.

This is an example execution time profile:

Figure 5.15: Example execution time profile

16From https://developer.chrome.com/devtools/docs/javascript-memory-profiling#
summary-view

67

 https://developer.chrome.com/devtools/docs/javascript-memory-profiling#summary-view
 https://developer.chrome.com/devtools/docs/javascript-memory-profiling#summary-view

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

The meaning of the columns is17:

• Function – name of the called function.

• Calls – number of calls to the function.

• Percent – time that all calls to this function took as percentage of the total
time of the profiling session.

• Own Time – time spent within the function (time spent within functions
called by that function is not taken into account).

• Time – total time spent for all calls to this function.

• Avg – average time for one call of the function.

• Min – minimum time spent within the function.

• Max – maximum time spent within the function.

The most important columns are marked with bold type.

17From https://getfirebug.com/wiki/index.php/Profiler

68

https://getfirebug.com/wiki/index.php/Profiler

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.2 Baseline frame rate for remaining optimizations

As a starting point for the more advanced optimizations I used a version of jslib.js
that includes the first two of the basic optimizations (5.4.5) as well as has the
debugging (5.4.9) and other minor issues cleaned up18.

Thus, the baseline frame rate for all charts that follow is 28 FPS:

Figure 5.16: This is the baseline for all charts that follow

18It is attached to the thesis as new base jslib.js. See Appendix A, A.2.

69

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.3 JavaScript optimizer

I tried running the runtime (jslib.js) and the JavaScript generated by the Links
compiler through the Google Closure Compiler19.

I supplied the following parameters to the compiler:

// @output_file_name de f au l t . j s
// @compi lat ion_leve l ADVANCED_OPTIMIZATIONS
// @language ECMASCRIPT5

ADVANCED_OPTIMIZATIONSmeans that I want the most aggressive optimizations
to be performed20.

In order to get the application to run, I had to introduce some modifications
to jslib.js21, so that it complied with requirements of the compiler22.

The effect of this optimization is presented below:

Figure 5.17: Performance of the code optimized with the Closure Compiler

Average frame rate is 29 FPS. Improvement in relation to the baseline: 1 %.

19https://developers.google.com/closure/
20https://developers.google.com/closure/compiler/docs/compilation_levels
21The final input to the Closure Compiler is attached to this document as google closure

input.js. See Appendix A, A.2.
22https://developers.google.com/closure/compiler/docs/api-tutorial3

70

https://developers.google.com/closure/
https://developers.google.com/closure/compiler/docs/compilation_levels
https://developers.google.com/closure/compiler/docs/api-tutorial3

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

I tested the code multiple times, also on Firefox. The effect of bumping up the
frame rate by about 1 FPS was consistent. Nonetheless, such an improvement is
practically negligible.

This means that the optimizations that the Closure Compiler performs, namely:

• removal of comments, line breaks, unnecessary spaces, extraneous punctua-
tion, and other whitespace,

• optimizations within expressions and functions, including renaming local
variables and function parameters to shorter names,

• renaming of global variables, function names, and properties,

• dead code removal,

• global inlining

have very little significance in this case and we should look for optimization pos-
sibilities in other places.

Although this optimization did not improve the performance significantly, run-
ning the output of the compiler through an optimizer could be beneficial for bigger
applications. Adding this sort of optimization (and obfuscation, which can also be
desirable) to the Links compiler could be taken into consideration.

The next two charts present the comparison of timeline plots generated by the
built-in Chromium profiler between the original (used for the baseline) and the
optimized code.

Figure 5.18: Chromium profiler’s heap timeline plot before Closure Compiler’s
optimizations (the frame rate was 28 FPS); 4 minutes, 8.3-220 MB

Figure 5.19: Chromium profiler’s heap timeline after the code was optimized with
the Closure Compiler (the frame rate was 29 FPS); 4 minutes, 6.7-174 MB

We can observe that the maximum heap size dropped by 46 MB. This is a
significant improvement and another reason to consider extending the compiler
with this optimization.

71

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.4 Comparison with the native version

It is also interesting to compare the previous timelines with a timeline for the
native JavaScript version of the benchmark23:

Figure 5.20: Timeline for the native JavaScript version; 2 minutes, 4-23.8 MB

We see that much less garbage is being generated. About 4 times less garbage is
being collected per GC event. The garbage collector slowdowns have no significant
impact on performance in this case.

Compare also the heap allocation record:

Figure 5.21: Native JavaScript version, heap allocations

Figure 5.22: Links version (the one used to generate the baseline – see 5.5.2), heap
allocation record

In the Links version of the application very large amounts of memory are being
allocated and collected. The reference line is at 100 KB and the heap size goes
up to 5 times higher than that. In case of the JavaScript version the size of the
heap is much smaller and there are no spikes. The reference line here is at 5 KB,

23Attached in file performance.html – see Appendix A, A.2

72

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

which means that the amount of memory allocated is up to 100 times greater in
the Links version.

And heap object statistics:

Figure 5.23: Native JavaScript version, heap objects

Figure 5.24: Links version (the one used to generate the baseline – see 5.5.2), heap
objects

In the Links version there are large amounts of objects on the heap with arrays
and closures having the biggest retained sizes. In the native version there is much
less memory objects being generated. Function closures take up much less memory.

73

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

The chart produced by the JavaScript version:

Figure 5.25: A chart generated by the JavaScript version of the benchmark

Note that double buffering is off, because it is unnecessary. Also the frame rate is
limited to 60 FPS – frames are drawn using requestAnimationFrame24. Compared
to the Links version, the frame rate here is stable (as expected – around 60 FPS).

24https://developer.mozilla.org/en/docs/Web/API/window.requestAnimationFrame

74

https://developer.mozilla.org/en/docs/Web/API/window.requestAnimationFrame

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.5 Execution time profiling

Profiling the execution time of any of my Links applications gives results similar
to this:

Figure 5.26: Profiling execution time of my Breakout clone

Obviously _yield and _yieldCont take the most overall time and are called
the most often (see Chapter 3, 3.4.1 for details). A lot of list operations means
calling a lot of functions that manipulate them, which are also quite costly.

Note that the average execution time of _yield is over 6 ms.

75

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

From this we see that aside from _yield* the following functions are candidates
for optimization:

• LINKS.eq – the compiler should make use of type information and generate
specialized code for comparing different types of objects, instead of just using
a general runtime function.

• map and other list manipulating functions (take, drop, zip, hd, tl...) – the
way lists are implemented (right now they are just JavaScript arrays) should
be changed and all functions operating on lists should be adjusted to that
more efficient implementation; that would be a major improvement in per-
formance.

These optimizations were implemented and are described in sections 5.5.6 to
5.5.10.

5.5.6 Linked list type

I replaced all Links lists with a custom list type, defined in Links like so:

typename Ls (a) = mu l . [| N i l | Cn : (a , l) |] ;

mu means it is a recursive definition.
I have defined all basic list manipulating functions for this type – also in Links.

These include:

lsLength ,
lsHead ,
l sTa i l ,
l sLas t ,
lsEmpty ,
l sZ ip ,
lsAppend ,
lsConcatMap ,
l s F i l t e r ,
lsMap ,
lsTakeWhile ,
lsTake ,
lsDrop

The names follow the common convention, except that they are prefixed with
ls-.

76

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Figure 5.27: Linked list type implemented in Links

We can see a drop in frame rate and a lot more garbage being generated. This
is the opposite of what we would expect. There seems to be much more copying.

Before I tried investigating how the generated JavaScript looks like and what is
the exact reason for this copying, I checked the hypothesis that functions like take
and drop, which might do some unnecessary copying, are problematic here. Then
I encountered strange behaviour (see 5.5.7) and moved on to a different approach.

77

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.7 Linked list type with native take and drop

The most copying in the benchmark application seems to be caused by take and
drop functions. For my custom list implementation I replaced them with optimized
JavaScript versions, called lsTake and lsDrop respectively.

Before this optimization, they were defined in Links:

fun lsTake (n , l) {
fun lsTakeHelper (m, n , l) {

switch (l) {
case Ni l −> Ni l
case Cn(x , xs) −>

i f (m < n)
Cn(x ,

l sTakeHelper (
m + 1 ,
n , xs))

e l s e Ni l
}

}
lsTakeHelper (0 , n , l)

}

fun lsDrop (n , l) {
fun lsDropHelper (m, n , l) {

switch (l) {
case Ni l −> Ni l
case Cn(x , xs) −>

i f (m < n)
lsDropHelper (

m + 1 ,
n , xs)

e l s e Cn(x , xs)
}

}
lsDropHelper (0 , n , l)

}

I use helper functions and recursion here. This compiles to continuation-passing
style, which adds to the overhead.

78

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

I implemented the optimized versions in JavaScript:

f unc t i on _lsTake (n , xs) {
var a r r = [] ;
whi l e (xs . _label !== ’ Nil ’ && n > 0) {

ar r . push (xs . _value [’ 1 ’]) ;
xs = xs . _value [’ 2 ’] ;
−−n ;

}
re turn _lsFromArray (a r r) ;

}

func t i on _lsDrop (n , xs) {
whi l e (xs . _label !== ’ Nil ’ && n > 0) {

xs = xs . _value [" 2 "] ;
−−n ;

}
re turn xs ;

}

Recursion is replaced with loops. Functions take advantage of the internal rep-
resentation of the list type used by Links’ compiler. _lsDrop performs no copying.

79

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Figure 5.28: Linked lists with take and drop in JS

There indeed is some improvement – frame rate went up from 24 to almost 27
FPS – but still overall the performance is lower than the baseline (28 FPS).

80

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

After over 8 iterations of the benchmark I also noticed this strange behaviour:

Figure 5.29: Linked lists with take and drop in JS – curious case

I was not able to track down the cause, but I concluded that I will not rely
on the list type defined in Links, but instead I will reimplement it entirely in
JavaScript.

81

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.8 JavaScript linked lists

I replaced the original list type with a JavaScript implementation. I implemented
all relevant list manipulating functions in JavaScript as well, except map*, which
was implemented in Links as lsMap*.

The cons25 function that constructs a linked list from a head and a tail was
defined in JavaScript as:

f unc t i on _lsCons (head , t a i l) {
re turn { _label : ’ : : ’ , _head : head , _ta i l : t a i l } ;

}

An empty list was defined as:

var l s N i l = { _label : ’ [] ’ } ;

This implementation was later further optimized (see 5.5.9).
The effect of this optimization:

Figure 5.30: Linked lists implemented entirely in JS (except map*)

Average frame rate is 31 FPS. 12 % more than the baseline.
25http://en.wikipedia.org/wiki/Cons

82

http://en.wikipedia.org/wiki/Cons

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

We see a small improvement. The frame rate goes up, the garbage collection
count decreases a bit.

We can also see the improvement in the heap allocation records:

Figure 5.31: Native JavaScript linked lists – less heap allocations

We notice that the reference line dropped from 100 KB (see 5.22) to 50 KB
and the heap size is a bit more stable in time. Less garbage is being generated.

Figure 5.32: Native JavaScript linked lists – heap objects

Compare the retained size of Array objects before (5.22) and after optimization
– 1,269,424 bytes vs 399,872 bytes, which is over 3 times less. The reason for this is
that before the optimization lists were represented with Array objects. The amount
of these objects before and after is 1,840 and 1,143 respectively.

The new linked list representation also caused the change in the amount of
Object objects – 2,735 vs 5,205. The retained size did not increase proportionally
(1,393,472 bytes vs 1,500,760 bytes), showing that our list type takes up relatively
little space.

83

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.9 JS lists with null

The implementation of _lsCons was simplified like so (compare to the implemen-
tation from 5.5.8):

f unc t i on _lsCons (head , t a i l) {
re turn { _head : head , _ta i l : t a i l } ;

}

And the empty list was simply defined as:

var l s N i l = nu l l ;

The lack of the _label property made list objects smaller, thus further reducing
the amount of generated garbage.

Figure 5.33: Further optimized native JavaScript linked lists

Simplifying and optimizing the native linked list bumped up the frame rate a
bit more. The final average frame rate for this optimization is 37 FPS (9 FPS more
than the baseline). There is less garbage collection and the low point of frame rate
oscillation went up a bit.

84

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

As illustrated below, this optimization did not influence the heap size signifi-
cantly:

Figure 5.34: Heap allocations after linked list optimizations

5.5.10 Equality

Another optimization, which was applied on top of the previous one was replacing
all the comparisons (==, etc.) in the code of the benchmark application with calls
to specialized equality functions – which assume the type of the things being com-
pared – implemented in JavaScript. This was supposed to reduce the overhead of
LINKS.eq (see Chapter 3, 3.4.4).

For example if we know that we are comparing simple integers at compile time
– and we do since Links is statically typed – instead of compiling this comparison
to an invocation of LINKS.eq, which will again check the type at runtime, we may
compile to:

f unc t i on _intEq (l , r) {
re turn l === r ;

}

or even inline the comparison. I implemented a few functions analogous to intEq
just to test what performance impact such an optimization could have.

85

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Figure 5.35: Using specialized functions for equality adds some more frames per
second

Indeed, it turned out to be a slight improvement.

86

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Looking at the Firebug plot showing function execution time:

Figure 5.36: The time that all the calls to LINKS.eq took was slightly reduced by
using specialized functions for comparison – here only objectEq (at the bottom)
took any significant time – compare that to LINKS.eq execution time (at the top
on 5.26)

We see that obviously comparing objects (_objectEq) took the most time. The
rest of the comparison functions, like _intEq are not in the picture as they took
much less time.

We can also observe that lsMapIgnore, which is my custom native JavaScript
function that works similarly to map – but is only interested in side effects, so
it does not have to construct and return a list – was a significant optimization.
Compare its average time of 3.5 ms with map’s almost 6 ms (seen on 5.26).

Similarly the other list manipulating functions (_ls*) achieved better or at
least as good performance as the original versions.

87

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.5.11 _yield

The last and the most significant optimization was to the _yield function. I re-
moved calls to __append and apply and replaced the three arguments to _yield
with a single lambda argument. This optimization required modifying the code
generated by the compiler (a few lines in irtojs.ml26 had to be added or adjusted).
This optimization was applied on top of all the previous ones.

Before any optimizations, _yield was defined more or less like so:

f unc t i on _yield (f , args , k) {
DEBUG. as se r t_no i sy (DEBUG. i s_funct i on (f) ,

"_yield : 1 s t arg expected a funct ion , got : " + f) ;
DEBUG. as se r t_no i sy (DEBUG. i s_funct i on (k) ,

"_yield : 3 rd arg expected a funct ion , got : " + k) ;
DEBUG. a s s e r t (DEBUG. is_array (args) ,

"_yield : 2nd arg expected an array , got : " + args) ;

var a r g s l en = args . l ength ;
var arguments = ___append(args , k) ;

++_yieldCount ;

i f ((_yieldCount \% _yie ldGranular i ty) == 0) {
i f (! _handlingEvent) {

var current_pid = _current_pid ;
setTimeout ((func t i on () {

_current_pid = current_pid ;
r e turn f . apply (f ,

___append(args , k)) }) ,
0) ;

}
e l s e {

throw new _Continuation (
func t i on () {

re turn f . apply (f ,
___append(args , k)) ;

}
) ;

}
}
e l s e {

re turn f . apply (f , ___append(args , k)) ;
}

}

26See Chapter 3, 3.3.2 for the description of the file

88

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

After all optimizations:

f unc t i on _yield (f) {
++_yieldCount ;
i f (_yieldCount == _yie ldGranular i ty) {

_yieldCount = 0 ;
i f (_handlingEvent) {

_theContinuation . v = f ;
throw _theContinuation ;

} e l s e {
var current_pid = _current_pid ;
window . setZeroTimeout (

func t i on () {
_current_pid = current_pid ;
r e turn f ()

}
) ;

}
} e l s e {

re turn f () ;
}

}

We can see that the signature of the function changed – it now takes only one
argument. I removed calls to the DEBUG functions, got rid of a modulo operation and
a negation. I optimized away all calls to apply and ___append and all unnecessary
local variables. I also replaced the call to setTimeout with the call to the faster
setZeroTimeout and I am no longer creating a new Continuation object each time
the function is called, but reusing a global object (_theContinuation) instead.

___append was defined as follows:

f unc t i on ___append(xs , x) {
var out = [] ;
f o r (var i = 0 ; i < xs . l ength ; i++) {

out [i] = xs [i] ;
}
out [i] = x ;
re turn out ;

}

Removing calls to it means that there should be much less unnecessary tempo-
rary arrays, which effectively means less garbage.

89

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Below I present charts generated in Chromium and Firefox after this optimiza-
tion:

Figure 5.37: _yield optimization in Chromium

90

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Figure 5.38: _yield optimization in Firefox

The oscillation gap shrank significantly and an average frame rate of over 50
FPS was achieved – almost double the baseline frame rate.

It is interesting to compare those charts as we can see slight differences between
garbage collectors in these browsers. The data point distribution is different –
particularly the more abrupt drops in frame rate reveal when the garbage collector
is run. In Chromium there is generally less “big” drops, which signify periodical
collections of large amounts of garbage. Both browsers use the same type of GC27.

27https://blog.mozilla.org/nnethercote/2014/03/31/generational-gc-has-landed/

91

https://blog.mozilla.org/nnethercote/2014/03/31/generational-gc-has-landed/

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Comparing timeline plots before and after the optimization:

Figure 5.39: Timeline plot before the _yield optimization; 1 minute, 10.8-90.2
MB

Figure 5.40: Timeline plot after the _yield optimization; 1 minute, 6.4-65 MB

we see that the size of the heap in time decreased significantly. The maximum
registered size was 65 MB, which is almost 30 MB less than before.

Heap allocation record:

Figure 5.41: Heap allocations after the _yield optimization

We see that the reference size dropped further, from 50 KB (5.34) to 10 KB.
Otherwise no significant changes.

92

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

And execution time:

Figure 5.42: Execution time after _yield optimization

Here _yield2 is the optimized version of _yield. Its average execution time is
3.475 ms, compared to 6.124 ms before (see 5.26) – almost twofold improvement,
which is reflected in the frame rate. Note again that ___append was optimized
away from _yield.

The final frame rate, after all optimizations, is 51 FPS. Almost 32 times more
than in the beginning, before I introduced any optimizations (5.3).

And there is still room for a lot more (and more advanced) optimizations. I
discuss some of them in Chapter 6.

93

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

5.6 Observations and summary
Simple optimizations, notably those presented in sections 5.4.1, 5.4.2, 5.4.3, 5.5.9,
5.5.10 and 5.5.11 of this Chapter, increased performance significantly.

The biggest performance issues were caused by inefficiencies in the scheduler
mechanism of the Links language and garbage collector slowdowns.

Large amounts of garbage were produced because of the inefficient implemen-
tation of the basic data structure in the language – the list – which caused a lot of
unnecessary copying of JavaScript arrays (used to represent the data structure).

These problems were largely improved by optimizations of setTimeout and
_yield* functions and by implementing a custom linked list structure and using
it instead of the original.

Figure 5.43 on the next page presents comparison of heap object statistics
between the native JavaScript version of the benchmark (see 5.5.4), the baseline
Links version (see 5.5.2) and the Links version after all optimizations.

We can see that overall the Links versions produce a lot more objects and take
up much more memory than the native one.

Comparing the Links versions before and after optimizations, the amount of
Array objects decreased and the amount of Object objects increased. This is
because I replaced the Array-based list representation with a faster linked list
implementation (5.5.9).

Also, the retained size of (closure) objects dropped while their amount stayed
the same. Large amount of closures is created by _yield* (5.5.11). The last opti-
mization got rid of the need to call ___append, which produced temporary arrays
in the closures, thus decreasing the retained size.

94

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Figure 5.43: Comparison of heap object statistics between JavaScript, baseline and
optimized versions. Significant information is underlined.

95

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

This is the comparison of heap allocation records:

Figure 5.44: The optimizations decreased the amount of memory used by the bench-
mark (note the reference size: 100, 50, and 10 KB)

5.7 Performance in games
After all the optimizations I was able to achieve satisfactory frame rate in all of
the implemented applications.

The performance of Links before my optimizations was insufficient for even the
simplest games (like a Breakout clone) to be playable.

The optimizations allowed to increase the frame rate, which provided the nec-
essary smoothness of animations and responsiveness of user’s input. The frame
rate above the assumed minimum (30 FPS) was consistently achieved in the most
complex of the implemented games.

This means that all of the practical goals of this thesis were completed.

96

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Here is a comparison of the frame rate before:

Figure 5.45: Frame rate in my Tetris clone – before any optimizations – 3 FPS on
average

97

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

And after optimizations:

Figure 5.46: Frame rate in my Tetris clone – after all optimizations – the average
frame rate is 330-430 FPS, over 100 times more

For a simple game like Tetris the frame rate improved tremendously. From a
few to a few hundred FPS.

98

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

Playability was achieved also in the most complex of the implemented games –
the Pac-Man clone:

Figure 5.47: Running my Pac-Man clone after optimizations; the average frame
rate is 40-50 FPS

99

CHAPTER 5. OPTIMIZATIONS AND BENCHMARKING

100

Chapter 6

Summary and conclusions

In this thesis I combined the topics of functional programming, web game devel-
opment and programming language optimization.

I developed four web games (see Chapter 4) in Links – an experimental func-
tional web programming language – and by optimizing its runtime system achieved
playability (which was not possible before), quantified by satisfactory frame rate.
I also wrote a benchmark application to measure the effects of each of my opti-
mizations (described in Chapter 5)1.

In the process of making this thesis I learned a lot about functional program-
ming – the paradigm in general – as well as familiarized myself on various levels
with different functional languages, particularly Haskell, OCaml, and obviously
Links. I also broadened my knowledge of JavaScript and web application develop-
ment.

Learning about all these subjects and using my knowledge in practice was very
challenging and exciting and I am sure that all of this was a valuable step towards
becoming a better engineer.

All of the thesis goals (stated in Chapter 1, 1.6) were fulfilled.

1Both the games and the benchmark application are available online:
https://rawgit.com/slindley/links/dariusz/examples/index.html
To run precompiled versions straight in the browser click on compiled version links in the Game
examples and Performance sections. Links to compiled versions of the games are also available
here:
https://rawgit.com/slindley/links/dariusz/examples/games.html.

101

https://rawgit.com/slindley/links/dariusz/examples/index.html
https://rawgit.com/slindley/links/dariusz/examples/games.html

CHAPTER 6. SUMMARY AND CONCLUSIONS

The following charts illustrate the effectiveness of introduced optimizations:

Figure 6.1: Before: average frame rate is 1.6 FPS

Figure 6.2: After: average frame rate is 51 FPS

The frame rate in the benchmark application increased from 1.6 FPS to 51 FPS
(3188 %). Similar improvement was observed in games – see Chapter 5, 5.7.

102

CHAPTER 6. SUMMARY AND CONCLUSIONS

6.1 Conclusions
The work that I did in the scope of this thesis allowed me to confirm in practice a
lot of engineering principles [21] related to software optimization:

• When optimizing it is crucial to analyze performance and detect bottlenecks.

• We should focus our optimization efforts on the most significant issues, where
we can get the biggest performance gains.

• Profiling is an immensely valuable tool for performance analysis.

• We can optimize on many levels: design, algorithms, data structures, source
code, compiler, runtime system.

• Sometimes more complex algorithms perform well on large amounts of data,
but the cost of their initialization, setup, etc. can cancel out or outweigh the
benefits for small amounts of data – in such case simple algorithms prove to
be more suitable.

From working with different languages and paradigms (functional and impera-
tive) I conclude that each has its upsides and downsides and a pragmatic approach
– combining multiple solutions and picking the best-suited tool – is the most ef-
fective.

In theory, all Turing-complete [19] programming languages have effectively the
same capabilities. But in each one, these capabilities are shaped into a different
tool, suited to do certain tasks better than other.

If we are focusing on practical results, the most effective way is to use languages
and paradigms not conservatively, but pragmatically. Mixing together different
approaches and features, picking that, which does the job that needs to get done
best.

103

CHAPTER 6. SUMMARY AND CONCLUSIONS

6.2 Future work
In terms of optimizations to the Links language these are possible directions that
one might consider to further improve the performance of the language:

• Write applications in a way that avoids generating garbage. For Links it
means enabling (more) ways to do it as well as optimizing the compiler and
the runtime, so that less garbage is being generated.

• Implement a custom garbage collector, give the user more control over mem-
ory.

• Make the compiler generate code for a language that compiles to LLVM byte-
code, then generate fast JavaScript from it using Emscripten2 (or something
similar). This would most likely also mean implementing a custom garbage
collector.

• Optimize JavaScript generated by the compiler.

• Further optimize some Links’ data structures and functions. The optimized
linked list type should be polished and adapted to the language.

• Introduce more advanced optimizations to lists, such as list fusion [22] and
deforestation [20].

• Implementing a few levels of debugging could be considered.

• Specialized equality functions seem to improve the performance, so they
should replace LINKS.eq.

• The continuation-passing style JavaScript generated by the compiler could
be optimized by adapting a more optimal CPS representation [15].

• Good place to look for ready-made solutions are other languages, similar to
Links, like Elm and Opa.

In terms of programming language development I believe that the trend for
incorporating the functional paradigm and features into the mainstream will con-
tinue.

In the area of functional game development there is definitely a lot of future
work to be done and I believe (as outlined in Chapters 1 and 3) that the combi-
nation of computationally intensive applications – such as computer games – and
functional programming will produce a lot of innovation in the future.

I intend to continue my work and research in these subjects.

2http://en.wikipedia.org/wiki/Emscripten

104

http://en.wikipedia.org/wiki/Emscripten

Bibliography

[1] Links basic documentation. http://groups.inf.ed.ac.uk/links/quick-
help.html.

[2] Andrew W. Appel. A Runtime System. https://users-cs.au.dk/hosc/
local/LaSC-3-4-pp343-380.pdf, may 1989.

[3] Davide Aversa. In search of the “Philosopher’s Code”. http://www.
davideaversa.it/2014/08/in-search-of-the-philosophers-code/, Au-
gust 2014.

[4] Arjan Boeijink, Philip K.F. Hölzenspies, and Jan Kuper. Introducing the
pilgrim: A processor for executing lazy functional languages. In Jurriaan
Hagen and Marco T. Morazán, editors, Implementation and Application of
Functional Languages, volume 6647 of Lecture Notes in Computer Science,
pages 54–71, Berlin, Germany, 2011. Springer Verlag.

[5] John Carmack. In-depth: Functional programming in C++.
http://gamasutra.com/view/news/169296/Indepth_Functional_
programming_in_C.php, 2012.

[6] John Carmack. QuakeCon 2013 Keynote, part 4. https://www.youtube.
com/watch?v=1PhArSujR_A, 2013.

[7] John Carmack. QuakeCon 2013 Keynote, part 5. https://www.youtube.
com/watch?v=cWA_9L70moE, 2013.

[8] Mun Hon Cheong. Functional Programming and 3D Games. Master’s thesis,
University of New South Wales, Sydney, Australia, November 2005.

[9] Philip Wadler Ezra Cooper, Sam Lindley and Jeremy Yallop. Links: Web
Programming Without Tiers. volume 4709 of Lecture Notes in Computer
Science, November 2006.

[10] Jake Gordon. Javascript Game Foundations – The Game Loop.
http://codeincomplete.com/posts/2013/12/4/javascript_game_
foundations_the_game_loop/, December 2013.

105

http://groups.inf.ed.ac.uk/links/quick-help.html
http://groups.inf.ed.ac.uk/links/quick-help.html
https://users-cs.au.dk/hosc/local/LaSC-3-4-pp343-380.pdf
https://users-cs.au.dk/hosc/local/LaSC-3-4-pp343-380.pdf
http://www.davideaversa.it/2014/08/in-search-of-the-philosophers-code/
http://www.davideaversa.it/2014/08/in-search-of-the-philosophers-code/
http://gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
http://gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.youtube.com/watch?v=1PhArSujR_A
https://www.youtube.com/watch?v=1PhArSujR_A
https://www.youtube.com/watch?v=cWA_9L70moE
https://www.youtube.com/watch?v=cWA_9L70moE
http://codeincomplete.com/posts/2013/12/4/javascript_game_foundations_the_game_loop/
http://codeincomplete.com/posts/2013/12/4/javascript_game_foundations_the_game_loop/

BIBLIOGRAPHY

[11] James Hague. Purely Functional Retrogames. http://prog21.
dadgum.com/23.html, http://prog21.dadgum.com/24.html, http:
//prog21.dadgum.com/25.html, http://prog21.dadgum.com/26.html,
http://prog21.dadgum.com/37.html, 2008, 2009. [Series of articles].

[12] James Hague. Functional Programming Doesn’t Work. http://prog21.
dadgum.com/54.html, http://prog21.dadgum.com/55.html, 2009, 2010.
[Series of articles].

[13] Pieter J. Mosterman Katalin Popovici. Real-Time Simulation Technologies:
Principles, Methodologies, and Applications, 2012.

[14] Miran Lipovača. Learn You a Haskell for Great Good. http://
learnyouahaskell.com/, 2011.

[15] Florian Loitsch. Exceptional Continuations in JavaScript. In 2007 Workshop
on Scheme and Functional Programming, September 2007.

[16] Robert Nystrom. Game Programming Patterns. http://
gameprogrammingpatterns.com, November 2014.

[17] Mark Overmars. A Brief History of Computer Games. http://www.cs.uu.
nl/docs/vakken/b2go/literature/history_of_games.pdf, 2012.

[18] Tim Sweeney. The Next Mainstream Programming Language: A Game Devel-
oper’s Perspective. https://www.st.cs.uni-saarland.de/edu/seminare/
2005/advanced-fp/docs/sweeny.pdf, 2006.

[19] A. M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937.

[20] Philip Wadler. Deforestation: transforming programs to eliminate trees. pages
231–248, 1990.

[21] Bob Wescott. Every Computer Performance Book: How to Avoid and Solve
Performance Problems on The Computers You Work With. CreateSpace
Independent Publishing Platform, USA, 1st edition, 2013.

[22] H. Iwasaki M. Takeichi Y. Onoue, Z. Hu. A Calculational Fusion System
HYLO. pages 76–106, Le Bischenberg, France, February 1997.

[23] Boris Zbarsky. [whatwg] Canvas size and double buffering. http://www.mail-
archive.com/whatwg@lists.whatwg.org/msg19969.html, Feb 2010.

106

http://prog21.dadgum.com/23.html
http://prog21.dadgum.com/23.html
http://prog21.dadgum.com/24.html
http://prog21.dadgum.com/25.html
http://prog21.dadgum.com/25.html
http://prog21.dadgum.com/26.html
http://prog21.dadgum.com/37.html
http://prog21.dadgum.com/54.html
http://prog21.dadgum.com/54.html
http://prog21.dadgum.com/55.html
http://learnyouahaskell.com/
http://learnyouahaskell.com/
http://gameprogrammingpatterns.com
http://gameprogrammingpatterns.com
http://www.cs.uu.nl/docs/vakken/b2go/literature/history_of_games.pdf
http://www.cs.uu.nl/docs/vakken/b2go/literature/history_of_games.pdf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.mail-archive.com/whatwg@lists.whatwg.org/msg19969.html
http://www.mail-archive.com/whatwg@lists.whatwg.org/msg19969.html

Glossary

AAA AAA video games are the ones with highest budgets for development and
promotion, which usually means very high quality.
http://en.wikipedia.org/wiki/AAA_%28game_industry%29. 13

continuation-passing style It is a style of programming. A function in CPS
always takes as one of its arguments a function of one argument – called
a continuation. After performing its computation, when it has its output
value ready, instead of returning it to the caller, it calls the continuation,
passing the output value to it. The continuation represents computations
that are to be performed after the function has completed. CPS is often
used by compilers as an intermediate representation.
http://en.wikipedia.org/wiki/Continuation-passing_style
http://en.wikisource.org/wiki/Scheme:_An_Interpreter_for_
Extended_Lambda_Calculus/Section_3#Continuation_Passing_
Recursion . 15, 17, 34, 78, 104

first-person shooter FPS is a video game genre in which the player explores the
game world from a first-person perspective, through the eyes of the character
he or she is controlling. "Shooter" means that the main focus of the game
mechanics is projectile weapon-based combat.
http://en.wikipedia.org/wiki/First-person_shooter. 14

frame rate The number of frames (images) displayed every second. Measured
in frames per second (FPS). Producing higher frame rates requires more
processing power and means smoother animation.
http://en.wikipedia.org/wiki/Frame_rate. 1

functional reactive programming FRP is a paradigm that incorporates ideas
of time flow and compositional events into functional programming. This
facilitates writing interactive animations, user interfaces, simulations, games
and other interactive programs.
http://en.wikipedia.org/wiki/Functional_reactive_programming
https://www.haskell.org/haskellwiki/Functional_Reactive_
Programming
http://elm-lang.org/learn/What-is-FRP.elm. 2, 14

107

http://en.wikipedia.org/wiki/AAA_%28game_industry%29
http://en.wikipedia.org/wiki/Continuation-passing_style
http://en.wikisource.org/wiki/Scheme:_An_Interpreter_for_Extended_Lambda_Calculus/Section_3#Continuation_Passing_Recursion
http://en.wikisource.org/wiki/Scheme:_An_Interpreter_for_Extended_Lambda_Calculus/Section_3#Continuation_Passing_Recursion
http://en.wikisource.org/wiki/Scheme:_An_Interpreter_for_Extended_Lambda_Calculus/Section_3#Continuation_Passing_Recursion
http://en.wikipedia.org/wiki/First-person_shooter
http://en.wikipedia.org/wiki/Frame_rate
http://en.wikipedia.org/wiki/Functional_reactive_programming
https://www.haskell.org/haskellwiki/Functional_Reactive_Programming
https://www.haskell.org/haskellwiki/Functional_Reactive_Programming
http://elm-lang.org/learn/What-is-FRP.elm

Glossary

heads-up display HUD is the area of the game screen, which contains informa-
tion relevant to the player, like current game level, score, health, etc. It is a
part of the user interface.
http://en.wikipedia.org/wiki/HUD_(video_gaming). 43

instantaneous frame rate Instantaneous means that it indicates how many
frames could be processed in a second, if all frames in that second took
as much time to process as the current frame.. 47, 51

purely functional language A language that has variables defined in a math-
ematical sense, where identifiers refer to immutable values. Computations
performing side effects are treated specially in such language – they can be
represented using structures called monads.
http://en.wikipedia.org/wiki/Purely_functional. 11

web game (Browser game) is a type of computer game that is implemented on
top of a web browser, usually using web technologies such as JavaScript,
HTML and CSS.
http://en.wikipedia.org/wiki/Browser_game. 1

108

http://en.wikipedia.org/wiki/HUD_(video_gaming)
http://en.wikipedia.org/wiki/Purely_functional
http://en.wikipedia.org/wiki/Browser_game

Acronyms

AI Artificial Intelligence. 38

AJAX Asynchronous JavaScript and XML. 5

FP Functional Programming. 12, 13

FPS Frames Per Second. 28, 37

FRP Functional Reactive Programming. 2

GC Garbage Collector. 13, 63

HUD Heads-Up Display. 43

IDE Integrated Development Environment. 8

109

Acronyms

110

Appendix A

Attached files

A.1 DVD

111

APPENDIX A.

The attached DVD contains the following directories:

dist – compiled versions of all applications written for this thesis; these can be run
in a web browser. This directory includes a copy of Links’ runtime libraries
(in the lib subdirectory).

doc – electronic version of this thesis (in PDF format) and a presentation from
diploma seminar (in Polish).

src – source files of all applications written for this thesis.

files – all the files described in A.2

The next section describes all relevant files that were used during performance
measurements and optimizations: the benchmark application as well as the run-
time.

All of these files are contained within the files directory on the attached DVD.
Different versions of the runtime were produced by modifying the original.

This allowed me to easily test different optimizations in isolation as well as in
combination. For inspecting and comparing, I suggest using a diff tool on different
versions of the files.

The names of the attached files approximately correspond to descriptions (if
present) found on charts in Chapter 5.

A.2 Files used in optimizations and benchmarking
Various versions of the benchmark application are attached to this document as
the following files:

• performance-frozen.links – the original benchmark application in Links (most
charts in this document were generated by it)

• performance-frozen-optimized.html – a version of the original benchmark op-
timized by the Google Closure Compiler1

• performance.html – native JavaScript version of the benchmark application

• BASE performance-frozen-lists.links – performance-frozen.links with a cus-
tom list type defined in Links. This is the base for all *performance-frozen-
lists files.

• TAKE-DROP performance-frozen-lists.links – uses JavaScript versions of
lsTake and lsDrop (which work like take and drop) defined in JS lists
2 - map jslib.js

• JS LISTS 2 - MAP performance-frozen-lists.links – uses a custom JavaScript
linked list type (defined in JS lists 3 - map jslib.js)

1https://developers.google.com/closure/

112

https://developers.google.com/closure/

APPENDIX A.

• JS LISTS 3 - MAP performance-frozen-lists.links – uses a custom optimized
JavaScript linked list type (defined in JS lists with null - map jslib.js)

• specialized equality performance-frozen-lists.links – uses specialized functions
for testing equality (defined in specialized equality jslib.js)

Various versions of the Links runtime (jslib.js)2:

• original jslib + canvas lib.js – the original (unoptimized) version of jslib.js
which was used as a reference – I added only the interface for canvas manip-
ulating functions to it. I used the jslib.js file from GitHub – from the version
of sessions branch (last commit July 30), which my branch (dariusz3) was
derived from.

• optimized _yield and _yieldCont jslib.js – the original with optimized ver-
sions of _yield and _yieldCont functions – the optimization removed any
references to functions in the DEBUG namespace from the body of _yield and
_yieldCont and made some other minor changes

• setZeroTimeout jslib.js – the original with all calls to setTimeout with the
second argument of 0 replaced by a call to setZeroTimeout4

• _yieldGranularity + 200 jslib.js – the original with _yieldGranularity
increased from 60 to 260

• new base jslib.js – the original with optimizations from optimized _yield and
_yieldCont jslib.js and setZeroTimeout jslib.js combined

• optimized yield + setZeroTimeout jslib.js – same as previous

• new base + _yieldGranularity + 200 jslib.js – new base jslib.js
with _yieldGranularity increased from 60 to 260

• google closure jslib.js – modified new base jslib.js with a function for invoking
Chromium debugger; this file was used as part of the input to Google Closure
Compiler; the whole input is attached in the file google closure input.js

• JS lists 2 - map jslib.js – adds a few functions for manipulating the linked
list type defined in JS LISTS 2 - MAP performance-frozen-lists.links

• JS lists 3 - map jslib.js – defines a linked list type (based on the one in
the Elm language5) and functions for manipulating it entirely in JavaScript.
Used with JS LISTS 3 - MAP performance-frozen-lists.links

2The names of the attached files approximately correspond to descriptions (if present) found
on charts in Chapter 5

3https://github.com/slindley/links/compare/dariusz
4Implementation from:

http://dbaron.org/log/20100309-faster-timeouts
5http://elm-lang.org/elm-runtime.js

113

https://github.com/slindley/links/compare/dariusz
http://dbaron.org/log/20100309-faster-timeouts
http://elm-lang.org/elm-runtime.js

APPENDIX A.

• JS lists with null - map jslib.js – JS lists 3 - map jslib.js with further opti-
mizations of the linked list type

• specialized equality jslib.js – adds specialized JavaScript functions for testing
for equality as (theoretically faster) an alternative to LINKS.eq

• proper yield2 jslib.js – adds an optimized version of _yield that required
a slight change in the JavaScript generated by the compiler (irtojs.ml was
adjusted for this optimization – it is attached to this document)

Significant Links’ compiler source files:

• lib.ml – the original lib.ml + interface for canvas manipulation

• lib 2.ml – the above lib.ml + interface for manipulating linked lists and
specialized equality functions

• irtojs.ml – the original irtojs.ml adjusted for an optimized version of _yield

114

List of Figures

4.1 The puzzle game 2048 implemented in Links 24
4.2 A Breakout clone in Links . 25
4.3 Links version of the classic Tetris 26
4.4 My variation of Pac-Man written in Links 27
4.5 A screenshot showing all of the contents of a web page that contains

the game . 28
4.6 What the player sees after launching the game (entering a web page

that contains it) . 29

5.1 An example chart . 50
5.2 The unoptimized version . 52
5.3 First optimization – faster _yield* 53
5.4 Second optimization – setZeroTimeout 55
5.5 Third optimization – calling setTimeout less often 56
5.6 Fourth optimization – double buffering off 57
5.7 First two optimizations combined 58
5.8 First three optimizations combined 59
5.9 First two and the fourth optimization combined 60
5.10 Invoking GC after mapping a function over a big list to clean up

stabilizes the frame rate; optimizing the implementation of map may
significantly boost performance . 63

5.11 Too high _yieldGranularity results in more GC slowdowns 64
5.12 Example timeline chart: 1 minute, 10.8-90.2 MB 65
5.13 Example heap allocation record; note that this was recorded over

about 30 seconds . 66
5.14 Example heap object statistics . 66
5.15 Example execution time profile . 67
5.16 This is the baseline for all charts that follow 69
5.17 Performance of the code optimized with the Closure Compiler . . . 70
5.18 Chromium profiler’s heap timeline plot before Closure Compiler’s

optimizations (the frame rate was 28 FPS); 4 minutes, 8.3-220 MB . 71
5.19 Chromium profiler’s heap timeline after the code was optimized

with the Closure Compiler (the frame rate was 29 FPS); 4 minutes,
6.7-174 MB . 71

5.20 Timeline for the native JavaScript version; 2 minutes, 4-23.8 MB . . 72

115

LIST OF FIGURES

5.21 Native JavaScript version, heap allocations 72
5.22 Links version (the one used to generate the baseline – see 5.5.2),

heap allocation record . 72
5.23 Native JavaScript version, heap objects 73
5.24 Links version (the one used to generate the baseline – see 5.5.2),

heap objects . 73
5.25 A chart generated by the JavaScript version of the benchmark . . . 74
5.26 Profiling execution time of my Breakout clone 75
5.27 Linked list type implemented in Links 77
5.28 Linked lists with take and drop in JS 80
5.29 Linked lists with take and drop in JS – curious case 81
5.30 Linked lists implemented entirely in JS (except map*) 82
5.31 Native JavaScript linked lists – less heap allocations 83
5.32 Native JavaScript linked lists – heap objects 83
5.33 Further optimized native JavaScript linked lists 84
5.34 Heap allocations after linked list optimizations 85
5.35 Using specialized functions for equality adds some more frames per

second . 86
5.36 The time that all the calls to LINKS.eq took was slightly reduced by

using specialized functions for comparison – here only objectEq (at
the bottom) took any significant time – compare that to LINKS.eq
execution time (at the top on 5.26) 87

5.37 _yield optimization in Chromium 90
5.38 _yield optimization in Firefox . 91
5.39 Timeline plot before the _yield optimization; 1 minute, 10.8-90.2

MB . 92
5.40 Timeline plot after the _yield optimization; 1 minute, 6.4-65 MB . 92
5.41 Heap allocations after the _yield optimization 92
5.42 Execution time after _yield optimization 93
5.43 Comparison of heap object statistics between JavaScript, baseline

and optimized versions. Significant information is underlined. 95
5.44 The optimizations decreased the amount of memory used by the

benchmark (note the reference size: 100, 50, and 10 KB) 96
5.45 Frame rate in my Tetris clone – before any optimizations – 3 FPS

on average . 97
5.46 Frame rate in my Tetris clone – after all optimizations – the average

frame rate is 330-430 FPS, over 100 times more 98
5.47 Running my Pac-Man clone after optimizations; the average frame

rate is 40-50 FPS . 99

6.1 Before: average frame rate is 1.6 FPS 102
6.2 After: average frame rate is 51 FPS 102

116

	Contents
	Introduction
	Scope
	Choice of topic
	Existing solutions and literature
	The future of functional programming in game development
	Challenges
	Thesis goals and contributions

	Tools and methods
	Programming languages
	Links
	JavaScript
	OCaml
	Haskell

	Software
	Programming paradigms and methods

	Background
	Functional programming in game development
	Potential advantages
	Issues and disadvantages
	Adoption of the paradigm
	Examples

	JavaScript games and garbage collector
	Links' compiler
	The setTimeout function
	Significant source files

	Links' runtime system
	Concurrency in Links
	Passing messages to processes
	Lists
	Equality
	Debugging

	Web game design and implementation
	Implemented web games
	Benchmark

	Requirements and design
	Anatomy of a game
	Auxiliary functions
	Type definitions
	The main function
	Updating game state
	Restarting the game
	Main game loop
	Game logic
	Rendering
	Web page structure

	Optimizations and benchmarking
	Initial notes
	The benchmark application
	The unoptimized version
	Basic optimizations
	Optimized _yield and _yieldCont
	Faster setTimeout
	Increased _yieldGranularity
	Turning off double buffering
	First two optimizations combined
	First three optimizations combined
	First two optimizations without double buffering
	Other simple optimizations
	Debugging
	The garbage problem

	Advanced optimizations and profiling
	Profiling
	Baseline frame rate for remaining optimizations
	JavaScript optimizer
	Comparison with the native version
	Execution time profiling
	Linked list type
	Linked list type with native take and drop
	JavaScript linked lists
	JS lists with null
	Equality
	_yield

	Observations and summary
	Performance in games

	Summary and conclusions
	Conclusions
	Future work

	Bibliography
	Glossary
	Acronyms
	Attached files
	DVD
	Files used in optimizations and benchmarking

	List of Figures

