
Politechnika Łódzka

Wydział Fizyki Technicznej, Informatyki
i Matematyki Stosowanej
Instytut Informatyki

Dariusz Jędrzejczak, 201208

Dual: a web-based,
Pac-Man-complete

hybrid text and visual
programming language

Praca magisterska
napisana pod kierunkiem
dr inż. Jana Stolarka

Łódź 2016



ii



Contents

Contents iii

0 Introduction 1
0.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Choice of subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Background 5
1.1 Web technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Document Object Model . . . . . . . . . . . . . . . . . . . . 5
1.1.2 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Design and implementation of Lisp . . . . . . . . . . . . . . . . . . 8
1.2.1 Abstract syntax tree and program representation . . . . . . 10
1.2.2 Text-based code editors . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Visual programming languages . . . . . . . . . . . . . . . . . 11
1.2.4 A note on history of VPLs . . . . . . . . . . . . . . . . . . . 13
1.2.5 Common criticisms of VPLs . . . . . . . . . . . . . . . . . . 14
1.2.6 The problem with structure . . . . . . . . . . . . . . . . . . 14

1.3 Screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Dual programming language 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Syntax and grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Basic syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Escape character . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Basic primitives and built-ins . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Language primitives . . . . . . . . . . . . . . . . . . . . . . 27
2.7.3 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Enhanced Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



CONTENTS CONTENTS

2.8.1 Structural representation of strings . . . . . . . . . . . . . . 32
2.9 Syntax sugar for function invocations . . . . . . . . . . . . . . . . . 33
2.10 Pattern matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10.1 Destructuring . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10.2 match primitive . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.11 Rest parameters and spread operator . . . . . . . . . . . . . . . . . 37
2.12 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.12.1 First-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.12.2 Just-in-time . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.12.3 In combination with | and ! . . . . . . . . . . . . . . . . . . 42

3 Dual’s development environment 45
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Text editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Visual representation and its editor . . . . . . . . . . . . . . . . . . 49

3.5.1 The design process . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Prototype implementation 57
4.1 Programming discipline . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 The language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 The environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 General architecture . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Text editor . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Visual editor and representation . . . . . . . . . . . . . . . . . . . . 64

5 Case study 65
5.1 The game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Comparisons to other VPLs 71
6.1 VPLs: scripting languages . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 MIT Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Blueprints Visual Scripting system . . . . . . . . . . . . . . . . . . 72

6.3.1 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 In comparison to Dual . . . . . . . . . . . . . . . . . . . . . . . . . 73

iv



CONTENTS CONTENTS

7 Summary and conclusions 75

Bibliography 77

Acronyms 93

A DVD 95
A.1 Running the prototype . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Design discussion 99
B.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1.1 Built-in documentation comments . . . . . . . . . . . . . . . 99
B.1.2 One-word comments . . . . . . . . . . . . . . . . . . . . . . 100

B.2 C-like syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

v



CONTENTS CONTENTS

vi



Chapter 0

Introduction

0.1 Scope
This research spans a fairly broad area of knowledge, connecting – in order of
importance – programming language design, web technologies, web application
design and development as well as computer game development.

The main focus of this thesis is designing a programming language, which can
have multiple deeply integrated editable representations.

I present a way to combine features of visual languages and text-based lan-
guages in an integrated development environment, which lets the programmer work
with both representations in parallel or intertwine them in various ways.

A proof-of-concept interpreter and development environment for the language
is implemented using web technologies.

Practical demonstration of the capabilities of the implementation is presented
by writing a Pac-Man clone in the designed language1. This also provides a refer-
ence for assessing the performance of the implementation.

0.2 Choice of subject
The choice of this particular subject stems from my deep personal interest in
programming language design. This research is an opportunity for me to create a
project that demonstrates various ideas in this area that I developed over time and
to explore and refine them further.

1The term “Pac-Man-complete” in the title of this thesis refers to a somewhat humorous de-
scription used by the Idris’ programming language[75] author, Edwin Brady[120, 135], to describe
the language. In the context of this dissertation it means that the designed programming lan-
guage provides enough features to allow one to write a clone of the classic Pac-Man game in
it.

1



CHAPTER 0. INTRODUCTION

0.3 Related work

With this research, I intend to explore certain aspects of programming language
design as well as further the growth of visual programming languages, propos-
ing a solution that improves over any existing comparable technology in terms of
simplicity, expressive power of the language and usability.

The first and main part of this research is concerned with designing a program-
ming language, which becomes the basis for the second part. This language, Dual,
is mostly based on one of the oldest PL2 families, the Lisp[123, 55] family. Lisp
and its various dialects are consistently regarded as one of the most expressive
PLs[100, 70], despite having a very simple syntactic and semantic core[118]. Dual
is also influenced by many modern PLs, such as JavaScript (as defined by the
ECMAScript[17]), which is the implementation language of its interpreter. Simi-
larly to Lisp, Dual has a minimal syntax, although with some modifications and
improvements (described in Chapter 2).

The second part of this research builds on top of theoretical[105] as well as
practical[117] achievements in the field of Visual Programming Languages (VPLs),
focusing on examining the latter. VPLs can be classified in various ways: [105, Sec-
tion VPL-II.B], [107, Section Types of VPLs], [67, Section Definition]. I introduce
my own classification by examining lanugages enumerated in [117]. Two major cat-
egories3 that emerge from this classification are “line-connected block-based” and
“snap-together block-based” VPLs. I design and implement a visual representation
for Dual, which combines features characteristic to both of these categories. The
development environment that is built for the language provides the ability to edit
the text and the visual representation in parallel, with the changes made to one
visible in the other immediately.

Visual languages are not especially popular compared to text-based languages.
But recently they have been gaining more popularity, particularly in game devel-
opment. Chief example and the main cause of this is Unreal Engine, the highly
popular and mainstream[57, 131] game engine, which in the latest version intro-
duced a visual programming language[110] as its primary scripting language. In
fact this is the only scripting language that the engine supports, having dropped
the UnrealScript language[126] included in the previous versions. This visual pro-
gramming language will be compared to Dual to highlight its advantages.

The Dual language, both its representations and its environment – I will further
use the terms “Dual system” or simply “system” to refer to these as a whole – are
built entirely on top of the open web platform[46], which is ubiquitous. This gives
the system great portability and makes the difficulty for the potential user to start
working with it minimal. This is how the usability mentioned in the first paragraph
of this section is defined.

2For the sake of terseness I will sometimes use the acronyms PL and VPL to abbreviate
“programming language” and “visual programming language”.

3By amount of languages that fall into each.

2



CHAPTER 0. INTRODUCTION

0.4 Goals
In line with the above, the purpose of this work is to introduce innovation as well
as show a practical application of the developed solution. The concrete goals are:

• To design a programming language, which meets the criteria of expressiveness
and usability outlined in the previous section.

• To provide a general design of the development environment for the language.
This design must include an editor for a visual representation of the language,
which must be directly mappable to the text form. Both forms must be
designed to be used interchangeably.

• To implement a prototype of the designed environment, including an inter-
preter for the language, a text editor and a visual editor that conform to the
main design requirements.

• To evaluate the practical usability and performance of the prototype by cre-
ating a clone of Pac-Man and examine the process as well as the results.

• To present possible ways of improving existing visual language systems.

0.5 Structure
This thesis is structured as follows:

Chapter 0 is this introduction.
Chapter 1 briefly describes technologies and tools used in developing any soft-

ware described here as well as discusses the essential elements of the theoretical
framework upon which the language was built.

Chapter 2 describes the design of the Dual programming language: its syntax,
semantics, primitives, core functions and values. It also elaborates on programming
language design in general.

Chapter 3 talks about the design of the language’s visual representation and
its development environment.

Chapter 4 describes the prototype implementation based on the designs. This
includes the language and its intrepreter as well as the environment.

Chapter 5 contains a case study of a more-than-trivial application developed
with Dual: a Pac-Man clone. Performance of the prototype implementation is as-
sessed and possible adjustments and improvements are discussed.

Chapter 6 compares Dual to existing visual programming languages.
Chapter 7 summarizes and concludes.
Appendix A describes the contents of the DVD attached to this thesis and

provides a short instruction on running the prototype.
Appendix B contains additional design ideas that may be implemented in the

future.

3



CHAPTER 0. INTRODUCTION

4



Chapter 1

Background

This chapter briefly introduces the theoretical and practical components involved
in design and implementation of the Dual programming language and its environ-
ment.

1.1 Web technologies

As stated in the introduction, one of the main design goals of the system is usability.
This is accomplished in practice by building on top of the most accessible and
ubiquitous platform – the web platform[141]1.

The language’s interpreter and development environment are intended to work
with and are built on web technologies: JavaScript, HTML5 and CSS. The proto-
type implementation makes use of Node.js, a server-side JavaScript runtime[78] and
CodeMirror, a JavaScript library which provides basic facilities for the text-based
code editor part of the system[82]. This part is modeled after modern web-oriented
code editors with similar design philosophy[47], such as Visual Studio Code[88],
Brackets[74], Atom[80] and many others.

1.1.1 Document Object Model

The Document Object Model (DOM) is an interface that lets JavaScript manip-
ulate HTML documents as tree structures. The interface aims to be independent
of a platform or programming language and is not limited to JavaScript and
HTML[21, 138, 50].

In the DOM, each part of the document is represented by a node in a tree
manipulable by JavaScript. All changes applied to the tree can be reflected in the
document immediately and displayed.

The DOM structure is manipulated with JavaScript in the following ways[132]:

• All of the document’s elements and their attributes can be changed or re-
moved.

1Also referred to as the open web platform[46]

5



CHAPTER 1. BACKGROUND

• New elements and attributes can be added.

• The whole tree structure can be easily traversed, as each node contains ref-
erences to many other nodes: its parents, children (with separate references
to the first and last child) or siblings.

• All the CSS styles assigned to the document and individual elements can be
changed. This means manipulating the details of how the elements are laid
out and displayed. An enormous number of different display properties can
be customized[27], such as colors, fonts, sizes, etc.

• JavaScript can react to all existing HTML events, such as clicking on ele-
ments, scrolling the page that contains the document, etc.

• JavaScript can create new events.

1.1.2 JavaScript

The JavaScript programming language was created by Brendan Eich for Netscape[17,
Introduction], the company which created the Netscape Navigator web browser.
There is a line of evolution that leads from Netscape and its browser to Mozilla
and Firefox[101, 116]. The language was developed in 10 days in April 1995[8].

Despite significant design flaws, JavaScript has became one of the most[149,
143], if not the most [147, Section Most Popular Technologies per Dev Type][146]
popular programming languages in the world. In this section I will briefly look
at some of the probable reasons for that from a programming language design
perspective.

From a programming language design perspective, JavaScript has many great
features, borrowed from excellent languages[17, Section 4 Overview], most notably:

• Scheme, one of two main dialects of Lisp[20]. It is a minimalist, but very ex-
tensible functional programming language. The features drawn from this lan-
guage include first-class functions (treating functions as values), anonymous
functions (also known as lambdas or function literals) and lexical closures.

• Self, a pioneering prototype-based object-oriented programming language[11],
which evolved from Smalltalk-80[5]. It introduced the concept of prototypes,
which is an approach to OOP, where inheritance is implemented by reusing
existing objects instead of defining classes. Prototype-based programming is
the feature that JavaScript adopted from this language.

The two above languages are characterized by a very minimalist nature. Both
languages as well as JavaScript[29] are dynamically typed – types can be checked
only at runtime.

The final advantage of JavaScript is the fact that it is distributed with a ubiq-
uitous environment of the web browser. This makes the language straightforward

6



CHAPTER 1. BACKGROUND

for developers to use. Easy to get started – attract novice developers Reach billions
of users[145]

The above mixture turns out to create a very powerful and usable language.
In the recent years JavaScript’s popularity has been steadily growing[144]. This

translated to significant improvements in the language’s standarization efforts.
Since 2015, ECMA International’s[85] Technical Commitee 39[84], the commitee
which defines ECMAScript – the official standard for JavaScript – adopted a new
process. Under this process, a new version of the standard is released annually[17,
16, 15]. The documents and proposals are publicly available at GitHub[86].

Static type checking for JavaScript is also possible with Flow[83] – a static type
checker, which works either as a syntax extension or through comment annotations
– or TypeScript[87] – which is a superset of JavaScript.

Concurrency model

In the context of the concurrency model, the JavaScript runtime conceptually
consists of three parts: the call stack, the heap and the message queue. All these
are bound together by the event loop[25], which is the crucial part of this model.
An iteration of this loop involves the following steps:

1. Take the next message from the queue or wait for one to arrive. At this point
the call stack is empty.

2. Start processing the message by calling a function associated with it. Every
message has an associated function. This initializes the call stack.

3. Processing stops when the stack becomes empty again, thus completing the
iteration.

This means, at least conceptually, that messages are processed one by one, in a
single thread and an executing function cannot be preempted by any other function
before it completes. In practice this is more complicated and there are exceptions
to these rules. But this explanation is sufficient for further discussion.

This model makes reasoning about the program execution very straightforward,
but is problematic when a single message takes long to execute. The problem is
observed e.g. when web applications cause browsers to hang or display a dialog
asking the user if she wishes to terminate an unresponsive script.

For this reason it is best to write programs in JavaScript that block the event
loop for as short as possible and divide the processing into multiple messages.

This concurrency model is called the event loop, because the messages are
added to the queue any time an event occurs (an has an associated handler),
such as a click or a scroll. In general input and output in JavaScript is performed
asynchronously, through events, so it does not block program execution.

7



CHAPTER 1. BACKGROUND

1.2 Design and implementation of Lisp

A very important family of programming languages and one which had the most
influence on the design of Dual is the Lisp family. In this thesis I use the singular
form “Lisp” to refer to the whole family rather that a concrete dialect or implemen-
tation – such as Common Lisp[19], Scheme[20], SBCL[93] or Racket[91] – unless
otherwise noted.

Lisp is characterized by a very minimal syntax, which relies on Polish (pre-
fix) notation for expressions and parentheses to indicate nesting. There are only
expressions and no statements in the language. This means that every language
construct represents a value. There is also no notion of operator precedence.

The two core components of a Lisp interpreter are the functions apply and
eval[1, 69, Section 4.1]. The former takes as arguments another function and a
list of arguments and applies this function to these arguments. The latter takes as
arguments an expression and an environment and evaluates this expression in
this environment. The typical implementation of eval distinguishes between a few
types of expressions. The essential are:

• Symbols (also known as identifiers or names) – e.g. velocity – these are
evaluated by looking up the value corresponding to the symbol in the en-
vironment, so velocity might evaluate to 10 if it is defined as such in the
environment

• Numbers (or number literals) – e.g. 3.2 – these evaluate to a corresponding
numerical value

• Booleans (boolean literals) – true or false – evaluate to a corresponding
boolean value

• Strings (string literals) – e.g. "Hello, world!" – evaluate to a corresponding
string value

• Quoted expressions – e.g. ’(+ 2 2) – a quoted expression evaluates to itself;
in other words a quote prevents an expression from being evaluated

• Special forms or primitives, which are expressions that have some special
meaning in the language. These are the basic building blocks of programs.
For example:

– if, the basic conditional expression and other flow control expressions;
the special meaning of these is that they evaluate their arguments de-
pending on some condition

– lambda expressions – essentially function literals, which consist of argu-
ment names and a body

– definition and assignment expressions; these modify the environment;
usually they treat their first argument as a name of the symbol in the

8



CHAPTER 1. BACKGROUND

environment, so it is not evaluated; the second argument is evaluated
and its value is associated with the symbol

A Lisp expression can look like this:

(+ 2 (* 3 5))

Words are delimited by white space. Each sequence of words between paren-
theses can be viewed as a list2. Lists can be nested inside each other. Each list
represents an expression, where the first element of the list is the expression’s
operator and the following elements are its arguments.

This parenthesized notation is called S-expressions[122, Section Recursive Func-
tions of Symbolic Expressions; Section The LISP Programming System]. These are
used to represent both code and data. For example the code from Listing 1.2 can
be represented (in Common Lisp3) as data:

(list ’+ 2 (list ’* 3 5))

; or shorter equivalent:
’(+ 2 (* 3 5))

Where list is a function that produces a list that contains the values of its
arguments.

’ is a quote symbol. It prevents an expression from being evaluated.
; begins a comment that extends to the end of current line.
+ and * are functions that perform their corresponding arithmetic operations:

addition and multiplication respectively.
This data representation can now be manipulated. For example:

; set the ‘expression ‘ variable to hold the same list value
; as in the above listing:
(setf expression ’(+ 2 (* 3 5)))

; the variable ‘expression ‘ now represents
; the expression ‘(+ 2 (* 3 5))‘

; replace ‘*‘ with ‘exp ‘ in the ‘expression ‘
; since it is just an ordinary list ,
; this is done with ordinary data manipulation functions:
(setf (first (third expression)) ’expt)

; the variable ‘expression ‘ now represents
; the expression ‘(+ 2 (expt 3 5))‘

Where setf evaluates its second argument and stores it in a variable repre-
sented by its first argument. The first argument can be – among other things[13,
Section 11.15.1] – the name of the new variable or a place in an existing list.

2Originally the name Lisp was an acronym, which stood for “LISt Processing”[13, Sec-
tion 1.2][7, Chapter 12]

3All the remaining listings in this section contain code in Common Lisp.

9



CHAPTER 1. BACKGROUND

first and third take a list as an argument and extract the first or the third
element from that list accordingly.

expt is a function that performs exponentiation: it takes two numerical argu-
ments and returns the value of the first raised to the power determined by the
value of the second.

We can now evaluate the expression:

; returns 245, which is the result of
; evaluating (+ 2 (expt 3 5)):
(eval expression)

eval here is a function of one argument – an expression to be evaluated in
the current environment. This is “a user interface to the evaluator”[19, Section 3.8,
Function EVAL] (which can be understood as the internal function eval described
at the beginning of this section).

The property of representing code and data in essentially the same form is
known as homoiconicity[51, 68, 6]. In the case of Lisp an S-expression can be very
straightforwardly mapped to a corresponding Abstract Syntax Tree (AST) node.

1.2.1 Abstract syntax tree and program representation

The term AST refers to a tree data structure that is built by parsers of program-
ming languages to represent syntactic structure of source code in an abstract as
well as easily traversable and manipulable way. In the simplest form, in expression-
only languages such as Lisp each node of such tree represents a single expression.
The tree is abstract in the sense that it does not necessarily contain all the syntax
constructs that occur in the source code or encodes them in some abstract way. In
case of Lisp, there’s no need to store or represent bracketing characters () in the
AST, as nesting is inherent in the data structure itself.

In theory, a programming language does not require a text representation and
could be defined only in terms of a data structure such as a syntax tree. Practically,
for a language to be useful, it needs to come with an editable representation that
provides a convenient way for a programmer to construct programs. Currently the
most successful representation for that is the human-readable text-based repre-
sentation, which evolved from more primitive and less convenient representations,
such as punched cards[114, 48].

1.2.2 Text-based code editors

Constructing programs with text representation can be done with any text editor.
This means that the representation is largely independent of a tool, which is an
advantage. Any application capable of editing text can theoretically be used to
edit any source code (ignoring details such as encoding, etc.). Such applications
are universally available, so source code stored in text files can be edited freely on
any platform with any tool.

10



CHAPTER 1. BACKGROUND

But for complex programs a simple text editor quickly becomes inconvenient
and a more specialized one is preferable. Such code editors introduce various fea-
tures that greatly improve the convenience of working with a text-based represen-
tation of a programming language. For example:

• Automatic structuring of the text to emphasize blocks of code.

• Highlighting of different syntactic constructs with different colors.

• Context-based auto-completion.

• Automatic correction of errors.

• The ability to fold distinct blocks of code.

• Advanced navigation through the code: jumping to declarations, definitions,
other modules or files.

Most of these features require that the editor makes use of a parser to recognize
the syntactic structure of a program.

Other advantages of a text representation, that stem from the multitude of
ways that raw text can be manipulated and processed and are not related to any
particular syntax:

• Find and replace with regular expressions.

• Selecting/processing many lines or even blocks of text.

• Editors often treat the source as a 2D grid of characters; each row and column
of such grid can be numbered.

• Debuggers, compilers and other elements of a programming language system
can use row and column numbers in error messages.

• Version control systems can easily compare (diff) and keep track of changes
in text files.

1.2.3 Visual programming languages

An alternative representation is the one employed by visual programming lan-
guages. By a visual programming language I mean a language that “lets users
create programs by manipulating program elements graphically rather than by
specifying them textually”[67, 107].

Such languages are usually tied to a particular editor, which allows the pro-
grammer to edit the source code with a mouse rather than the keyboard. That is
instead of typing in streams of characters to be parsed and assembled into a struc-
tural form, the programmer inserts, arranges and connects together distinct visual
elements to produce such a structure. Thus I contend that visual programming can

11



CHAPTER 1. BACKGROUND

be defined at the lowest level as manipulating a visual form of a language’s syntax
tree.

The design of the visual representation for my language involved a rough survey
of visual programming languages. In this section I will describe the results obtained
from this survey.

I classified each of nearly 160 languages listed in [117], according to type of
their visual representation into several categories.

Additionally, I associated each language with a number s ∈ [0, 3], which de-
scirbes its “structure factor”. This quantifies my subjective assessment of the read-
ability of the representation compared to familiar text representation (s = 3). For
example, if it appears that the representation consists of scattered blocks, con-
nected by lines and the layout seems to be arranged by the user, with no editor-
support for automatic structuring, s will be low. In other words, the greater the
number, the better structured the representation.

This analysis is not strict and systematic, but rather heuristic-based. A lan-
guage is classified based solely on the screen shots from its environment. Its pur-
pose is to assess general trends and determine which solutions gained the greatest
adoption in practice. This is to aid the further design process.

Below I present the results of this classification in the form of a list. The items
are organized as follows:

• «Name of category» – «percentage of languages that fall into the category»
– «the average “structure factor” s for the category»

«short description»

Here are the compiled results:

• Line-connected block-based – 66% – 0.61

Blocks or boxes connected with lines or arrows.

• Snap-together block-based – 11% – 2.4

Resembles familiar text representation, except that the structure is produced
by snapping together blocks, as in jigsaw puzzles.

• Other representations – 23% – 1.39, notably:

– List-based – 2.5% – 2
Nested lists, possibly with icons.

– GUI-based – 2.5% – 1
Buttons with icons that represent various components.

– Nested – 2.5% – 2
Nested windows, boxes, circles or other “scopes”. A border of each scope
is clearly distinguishable.

12



CHAPTER 1. BACKGROUND

– Enhanced text – 2.5% – 2.75
Similar to text representation, but with differing font sizes, embedded
widgets, or other enhancements.

– Timeline-based – 2% – 1.17
Specialized for animations or music. Elements are placed on a timeline.

– Others – 11% – varying
The remaining 11% are various other representations: experimental, in-
game or game-based VPLs, hybrid, specialized, esoteric, etc. A few ex-
amples are presented at the end of this chapter, in Section 1.3

The section 1.3 at the end of this chapter contains screenshots from editors and
environments for VPLs in each of the categories, in order in which they appear in
the above list.

The above results help set possible design directions. We may conclude that
in practice there are basically two main types of visual representations: “line-
connected block-based” and “snap-together block-based”.

I used two more heuristics to verify this conclusion:

• I analyzed the top hits when searching the phrase “visual programming lan-
guage” with popular search engines, especially by images. Most results link
to websites with information about VPLs based on these two main repre-
sentations. I searched the phrase in Bing, Google, Yahoo and DuckDuckGo
and out of the top 20 hits I counted 14-18 (depending on the search engine),
which would qualify.

• I analyzed the Wikipedia article about VPLs[67]. The first paragraphs of the
definition state:

[M]any VPLs (known as dataflow or diagrammatic programming)[103]
are based on the idea of "boxes and arrows", where boxes or other
screen objects are treated as entities, connected by arrows, lines or
arcs which represent relations.

This is essentially a description of the “line-connected block-based” represen-
tation.

The example screenshot at the top of the article presents the MIT Scratch
programming language, which falls into the “snap-together block-based” cat-
egory. [105, Section VPL-II.B].

1.2.4 A note on history of VPLs

The prime example of a VPL that uses the second-most popular representation
according to my classification is MIT Scratch. It is possibly the most popular edu-
cational VPL[60, Section Community of users] – even referred to as “the most pop-
ular VPL”[111]. One classification even calls the VPLs that use the “snap-together
block-based” representation “Scratch & friends”[107, Section Types of VPLs].

13



CHAPTER 1. BACKGROUND

However Scratch was not the first language to use this representation. It was
preceded by logoBlocks and earlier similar projects[134].

In fact, if we go far back in history of VPLs, we eventually arrive at the Logo
programming language, which was a dialect of Lisp[113, 58]. It was not a VPL
by the definition quoted at the beginning of Section 1.2.3, as it did not have a
way to manipulate program elements visually. Nonetheless, one author calls it “the
first real mainstream VPL”[111]. This is because it pioneered many ideas related
to visual programming and was inclined in that direction. As is reflected in its
many derivatives, which were indeed VPLs[119], such as the visual programming
environment of LEGO Mindstorms[104, 54, 92].

1.2.5 Common criticisms of VPLs

Among the most common general criticisms of visual programming languages
are[102, 133, 137, 49], [53, Section Criticism]:

• There is a barrier of entry for programmers used to text-based languages.

• Essential programming tools are unavailable or cannot be applied: version
control, side-by-side (or diff) comparison, change tracking, testing frame-
works, build systems.

• Visual primitives take up significantly more space than text.

• Existing tools are of low quality.

• Performance is overall slow.

• There are no extensibility mechanisms.

• The target group seems to be novice users.

• There is no universal visual representation.

• VPLs create closed ecosystems.

I will address some of these criticisms in Chapter 3.

1.2.6 The problem with structure

The next few paragraphs outline the major problem with the most popular (as
the results presented in Section 1.2.3 suggest) “line-connected block-based” visual
representation.

The reason for its popularity might be that such diagrammatic representation
is a very natural way of showing relationships between objects, often used when
designing on a whiteboard[94] or with tools like Unified Modeling Language[127].

Nonetheless when used naively to visualise a program source code it has a major
disadvantage.

14



CHAPTER 1. BACKGROUND

Editors which use this representation usually leave the layout of the program
source completely to the user, providing no automatic structuring. This may easily
result in disorder and true “spaghetti-code”, where free-floating blocks are scattered
around, connected by many intersecting lines. This is especially true for complex
programs (See Figure 1.1).

This lack of support for automatic structuring, which is an essential feature of
modern text-based code editors is clearly a regression.

Figure 1.1: An example of a complex program represented with blocks connected
by lines; screenshot from [161]

This problem does not occur in the second most popular VPL representation:
the “snap-together block-based”.

There, the code is presented and manipulated in terms of visual blocks, which
can be dragged and dropped by mouse and snapped together like jigsaw puzzle
pieces. This representation is self-structuring and designed to resemble the familiar
text-based, indent-structured representations.

15



CHAPTER 1. BACKGROUND

1.3 Screenshots
This section presents screenshots that show examples of visual programming lan-
guages that fall into each of the categories discussed in Section 1.2.3.

Figure 1.2: Blueprints Visual Scripting system; An example of a “line-connected
block-based” VPL; screenshot from [152]

Figure 1.3: MIT Scratch programming language editor; An example of a “snap-
together block-based” VPL; screenshot from [150]

16



CHAPTER 1. BACKGROUND

Figure 1.4: Lava programming language editor; An example of a “list-based” VPL;
screenshot from [159]

Figure 1.5: Mozilla Appmaker; An example of a “GUI-based” VPL; screenshot
from [157]

17



CHAPTER 1. BACKGROUND

Figure 1.6: StroyCode editor; An example of a “nested” VPL; screenshot from
[158]

Figure 1.7: Lamdu visual environment; An example of an “enhanced text” VPL;
screenshot from [160]

18



CHAPTER 1. BACKGROUND

Figure 1.8: Google Web Designer; An example of a “timeline-based” VPL; screen-
shot from [156]

Figure 1.9: The esoteric programming language Piet; An example of an esoteric
VPL; screenshot from [153]

19



CHAPTER 1. BACKGROUND

Figure 1.10: “Lily was a browser-based, visual programming environment written
in JavaScript.”[128]; An example of an experimental VPL; screenshot from [154]

Figure 1.11: Minecraft[89] can be considered a visual programming lanugage. It’s
an example of a “game-based” VPL; “[S]omeone has created a fully programmable
computer using Minecraft”[117]; screenshot from [155]

20



Chapter 2

Dual programming language

This chapter describes the design of the Dual programming language with focus
on its text representation and its executable representation – the syntax tree.
The most important concept, the Enhanced Syntax Tree, which enables complete
integration of any number of additional representations with the language is also
discussed.

2.1 Introduction
The evolution of programming languages is a gradual process. And so is the process
of designing a single language. The approach that I found effective was iterative
refinement, addition, testing, and sometimes subtraction of features. In practice
this translates to intermediate designs and implementations being rearranged into
new forms, with some discarded. I did not arrive at something that I could call
the final form of the language, so a lot of the features described here are subject
to change and improvement. I intend to work on this project further beyond the
scope of this thesis.

The language was not originally intended to be a Lisp-like language or clone
thereof, but throughout the research I ended up learning a lot about Lisp, some-
times by reinventing parts of this language. A somewhat philosophical interpre-
tation of this would be that Lisp is built on fundamental principles that are
(re)discoverable rather than invented.

In this and the following chapters I cover a lot of “design surface”, only delving
deep into some features that are relevant to core ideas that I wanted to convey in
this thesis.

2.2 Syntax and grammar
Among the main design goals for the prototype of the language were simplicity
and clarity. I wanted a language that is easy to parse and transform to a different
representation. This restriction suggests that the syntax should be as minimal as
possible.

21



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

I choose Lisp’s syntax as the starting point. It is indeed almost as simple as one
could imagine. But because of its almost complete uniformity it is often criticized.
Some of the major criticisms are:

• In general it is hard to teach, because complex code gets easily confusing[10].

• The more nested the syntax tree, the harder it is to keep track of and balance
parentheses; there tends to be a lot of closing parentheses next to each other
in the source[72].

I made a few simple adjustments to the syntax in order to address these con-
cerns, at least to some degree. These modifications do not significantly increase
the complexity of a parser, but may considerably improve the syntax in terms of
ease of use and readability for a human.

2.2.1 Basic syntax

Below I present the definition of Dual’s grammar in left-recursion-free Backus–Naur
Form. It is included here only for the sake of formality. I believe that for such a
simple grammar BNF introduces more noise and is unnecessarily more complex
than a textual description, possibly with the help of regular expressions or sim-
ply verbatim parser source code. For these reasons any extensions to this basic
grammar will later on be introduced in these ways.

This is the BNF definition, a bit verbose for clarity:

<expression > ::= <word > | <call >
<call > ::= <operator > <argument -list >
<operator > ::= <word > <argument -lists >
<argument -list > ::= "[" <arguments > "]"
<word > ::= /[^\s\[\]]+/
<argument -lists > ::= <argument -list > <argument -lists > | ""
<arguments > ::= <expression > <arguments > | ""

BNF here is extended with the addition of a regular expression (between /
delimiters) in the definition of <word>. The regular expression can be read as “any
character which is not white space, [ or ]”. This means that aside from white space,
which acts as expression separator there are only two special characters that the
parser has to worry about – the square brackets.

The above grammar definition is obviously very similar to BNF description[121,
115] of Lisp.

The following expression in Lisp:

(+ 2 (expt 3 5))

has an equivalent expression in Dual:

+[2 expt[3 5]]

Comparing these, we may observe that in Dual:

22



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

• The primary bracketing characters are square brackets ([]) instead of paren-
theses. The reason for that design choice is that these are easier to type than
parentheses or curly brackets (as they do not require holding the shift key),
which matters considering the ubiquity of these characters in the source code.

• Expression’s operator name is written before the opening bracket that pre-
cedes the list of arguments, as in operator[argument-1 argument-2 ...
argument-n].

Other than these two differences, Dual’s notation is equivalent to S-expressions.
Its advantages are:

• It is easier to parse by a human. Operators are clearer distinguished from
operands. This is arguably because this notation is more familiar, bearing a
similarity to the general mathematical notation (as in f(x)) and the most
popular programming language syntax – the C-like syntax1

• If an expression has another expression as its operator, it is written as
op[args-1][args-2], which reduces the amount of nesting and thus the
amount of identical bracketing characters appearing next to each other in the
source code. Compare the equivalent S-expression: ((op args-1) args-2);
and with multiple levels: op[args-1][args-2][args-3][args-4] vs ((((op
args-1) args-2) args-3) args-4).

An interesting property of this syntax that, depending on the context, could be
classified as an advantage, disadvantage or neither is that the sequence of characters
[[ is not legal, whereas in Lisp the analogous sequence (( is.

Alas, this simple notation doesn’t do away with a lot of other problems inherent
in all minimal syntaxes, related to their homogenity. Later in this chapter I will
introduce extensions and syntax sugar, which make the notation a little bit more
diverse. Keep in mind that every special character that is introduced, is taken
away from the set of possible <word>-characters, which implies that the regular
expression for <word> is changed accordingly.

2.3 Comments
Comments are a basic and indispensable syntax feature of any programming lan-
guage. I chose to include a comment syntax similar to the one found in Ada, Haskell
or Lua:
-- a comment that extends until the end of the line

-- an expression that computes square root of 81:
sqrt [81]

111 out of the top 20 languages as of June 2016[149] have C-based syntax (by this classification:
[56]). If we extend the syntax family to Algol-like, its virtually 20 out of 20 – [148]. There are no
languages with Lisp-based syntax among the most popular ones.

23



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

--[
this is a multiline comment
--[

multiline comments can be nested

as long as [ and ] are balanced , anything can be nested
within

multiline comments

for example:
--[

this is a comment that includes a piece of code:
*[7 7]

which would evaluate to 49
]

]
]

2.4 Numbers
Numbers in the language are represented as JavaScript numbers. This means that
there’s only one number type – 64-bit floating point2. They are implemented as
follows:

• When a word is tokenized by the parser, it is converted to a JavaScript num-
ber with a Number type constructor, which returns either the corresponding
value (if the word is parsable to a number) or the value NaN. In the former
case, the numerical value is stored in the appropriate syntax tree node, as its
value property.

• Upon evaluation, a syntax tree node is checked for the value property. If it
has one it is given as the result of the evaluation.

• The fact that a number is stored as a syntax tree node, which contains the
its string representation and its raw value, both obtained from the source
code during parsing means that conversion from a number literal to string is
zero-cost, which could be useful for optimization.

Thus all of the following JavaScript number literals are valid in Dual:
1
357
3.14
0x11 // hexadecimal
0b11 // binary
0o11 // octal
5e-2 // exponential notation

2Defined by the ISO/IEC/IEEE 60559:2011 (IEEE 754) standard: [18, 130]

24



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

2.5 Escape character
An escape character \ is introduced. It allows special characters to be included in
variable names.

For example:
word\ with\ spaces\ and\ braces \[\]

would be a single valid word and could be used as an identifier for a variable.

2.6 Strings
String values are introduced in Dual as follows:
’[A quick brown fox jumps over the lazy dog]

’ is a special operator that produces a string value. It takes any number of
arguments, which must be valid expressions.

Strings support variable substitution (also known as string interpolation[64]).
Assuming we have a variable animal-0 with the string value "bear" and another
variable animal-1 with the string value "duck", this string:
’[A quick brown {animal -0} jumps over the lazy {animal -1}]

would evaluate to:
"A quick brown bear jumps over the lazy duck"

Special characters inside string can be escaped with the escape character \. Note
that balanced square brackets that are part of syntactically valid Dual expression
do not have to be escaped.

The implementation of strings is explained in detail in Section 2.8.

2.7 Basic primitives and built-ins
This section enumerates and briefly describes Dual’s basic primitives and built-in
functions and values.

The items in Sections 2.7.1 and 2.7.2 are structured as follows:

• «name» [«arguments»]

«description»

Where «name» is the name of the function/primitive and «arguments» are
either the names that describe the arguments of the function/primitive or its arity.
That is, the number of arguments that the function/primitive is defined for. This
can be a fixed value (e.g 1), a fixed range of values (e.g. 0..3) or a range of values
without an upper bound (e.g. 0..*, which means 0 or more). An argument name
can optionally contain a colon character :, which is followed by the type that the
argument is expected to have.

«description» is a brief description of the function/primitive.

25



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

2.7.1 Functions

The following basic functions are defined in the language:

• list [0..*]

Returns a JavaScript Array[23], which contains the values of its arguments.

• $ [0..*]

An alias for list.

• apply [f args]

Works like Lisp’s apply: it takes a function and a list of arguments and
returns the result of applying the function to the arguments.

• log [0..*]

Wraps JavaScript’s console.log method[26]. It outputs the values of its
arguments to JavaScript’s standard output – web browser’s console.

• typeof [arg]

Wraps JavaScript’s typeof operator. “[R]eturns a string indicating the type
of the unevaluated operand.”[36]

• or [a b] and and [a b]

The basic logical operators – analogous to || and && in JavaScript.

• any [0..*] and all [0..*]

Like the above, but accept variable number of arguments. These return either
true or false.

• not [arg]

The logical negation operator (!).

• mod [arg]

The modulus (%) operator.

• -# [arg]

The unary minus operator. It negates its argument.

• sum [0..*] and mul [0..*]

Perform summation and product operations on any number of arguments.

• to-int [arg:number]

Converts its argument to an integer value, by truncating the decimal part.

• strlen [str:string]

Returns the length of str.

26



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

• str@ [str:string n:integer]

Returns the nth character of str.

Moreover, all basic binary inequality operators <, >, <=, >= as well as all ba-
sic binary arithmetic operators +, -, *, / are supported. Comparison operators:
= and <> are equivalent to JavaScript’s === and !==, which means they perform
strict comparison, without implicit type conversion[24, Section Equality operators].

2.7.2 Language primitives

The Dual language supports the following primitives:

• bind [name value]

Evaluates its second argument and binds this value to the name of the first
argument. This name is bound within the current scope. This is a basic con-
struct for defining variables, like var or define in other languages. Significant
semantics here are that new scopes are introduced by function bodies, macro
bodies and match expression bodies. The primitive also supports pattern
matching to deconstruct the value and bind its components to possibly sev-
eral variables. In that regard it works a lot like JavaScript’s destructuring
assignment[28] or similar features in other languages, such as Perl or Python.
This primitive can be used only for binding names that don’t exist in the
scope at the point of its invocation. There are other constructs for mutat-
ing and modifying existing variables. There is no hoisting[38, Section var
hoisting], as definitions are processed in order in which they appear in code.

For example:

bind [greeting ’[Hello ]]

• if [condition consequent alternative]

This primitive serves as a basic conditional evaluation construct. Its seman-
tics are like those of the analogous construct in Lisp. It accepts 3 arguments:
first the condition expression, then the consequent, that is, the expression
to be evaluated if the value of the condition is not false (note that this is a
strict rule; any other value than false is interpreted as true; every condi-
tional construct in the language follows this rule). The third argument, the
alternative is the expression that is evaluated otherwise.

• do [0..*]

Evaluates its arguments in order and returns the value of the last argument.
Fulfils the role of a block of expressions.

For example:

27



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

if [<[a 2] do [
bind [b -[2 a]]
log[’[ difference b:] b]

] do [
bind [c -[a 2]]
log [’[ difference c:] c]

]]

• while [condition body]

A basic loop construct. If condition is equivalent to not false, evaluates
body. Repeats these steps until condition evaluates to false. Returns the
value of the last evaluation of body or false if the body was not evaluated.

• mutate [name value]

If a variable identified by name is defined within the current scope or any
outer scope, changes (mutates) its value, so it now refers to the result of
evaluating the value argument. The scopes are searched from the innermost
to the outermost, in order. If the name argument doesn’t identify any variable,
an error is thrown. Returns the scope (environment), in which the primitive
was evaluated.

• dict [0..*]

Creates and returns a JavaScript object. It takes an even number of argu-
ments. Arguments are considered in twos, as key-value pairs. These pairs
determine properties for the new objects. Keys, which must be words, are
property names and their corresponding values, which can be arbitrary ex-
pressions, are the values of these properties.

For example:

-- creates an object with four properties and assigns it
-- to variable ‘car ‘:
bind [car dict [

id 0
brand ’[Ford]
model ’[Mustang]
year 1969

]]

• assign [2..*]

A wrapper for JavaScript’s Object.assign()[31]. It copies the values of all
properties from one or more source objects to a target object. Returns the
target object. The first argument is the target object, the following arguments
are the source objects.

• code’ [arg]

28



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

Returns its argument without evaluating it. Used in macros, which return
unevaluated code, which is substituted in the syntax tree and only then
evaluated.

• macro [1..*]

Returns a macro value. The last argument is the macro’s body. The preceding
arguments are the patterns for the macro’s arguments. See Sections 2.10 and
2.12 for details.

• of [1..*]

Returns a function value. The last argument is the function’s body. The
preceding arguments are the patterns for the macro’s arguments. See Section
2.10 for details.

• of [2..*]

Returns a function value. Treats its penultimate argument as the function’s
body and all the preceding arguments as patterns for the function’s argu-
ments. See Section 2.10 for details.

The last argument is used when the function is called and the values supplied
as arguments do not match the patterns. If the argument is a function, it
will be called with the same values as arguments and if it is a value it will
be returned.

This enables chaining functions together like so:

bind [f
of~ [a b c log[’[called with three arguments ]]

of~ [a b log[’[called with two arguments ]]
of~ [a log[’[called with one argument ]]

log[’[called with zero or more than three
arguments ]]

]
]

]
]

-- will log "called with two arguments ":
f[3 2]

• procedure [body]

Returns a function value. Its only argument is the function’s body.

• match [2..*]

Performs pattern matching. Its first argument is an expression to be matched.
The following arguments are two-element lists, where the first element is the
pattern to be matched and the second the expression to be evaluated if it
matches. See Section 2.10.2 for details.

29



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

• cond [1..*]

It works like a nested if-elses and similarly to Lisp’s cond[19, Section 5.3,
Macro COND]. Its arguments are two-element lists, where the first element
is a condition that should evaluate to a boolean value and the second is the
expression to be evaluated if it the condition is true. It evaluates at most
one expression: the one that has a true condition. Conditions are checked in
order.

• . [2..*]

Property accessor. Essentially works like JavaScript’s . operator[32]:

For example:

.[ window Date now ][]

translates to JavaScript as:

window.Date.now();

If a property cannot be accessed, an error is thrown.

• : [3..*]

Works symmetrically to . – it sets a property to a value specified by its last
argument.

For example:

:[game -state hero ammo 5]

translates to JavaScript as:

gameState.hero.ammo = 5;

If a property cannot be accessed, an error is thrown.

• @ [arg]

Identity operator. Returns the value of its argument.

• async [1..*]

Its first argument should be an asynchronous JavaScript function, such as
requestAnimationFrame[42]. It applies this function to its remaining argu-
ments.

2.7.3 Values

The following values are also defined:

30



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

• true and false

Evaluate to their respective boolean values. _ is an alias for true when used
outside of pattern-matching. This enables a convenient compatibility between
match and cond: if we’re matching a single value and want to have a default
case, then _ is used to match any value. Similarly, if _ is given as a condition
in the last alternative of cond, it will evaluate to true and work as the default
case.

• undefined

Evaluates to JavaScript’s undefined value. It is a primitive type that is used
by the language to mark values that have not been assigned a value. Also,
functions that do not explicitly return a value, return undefined[37].

• window

Provides access to JavaScript’s global window object[40].

2.8 Enhanced Syntax Tree
In order to enable full mapping between any number of program representations
at the syntax-level, a modification of an AST was designed as a data structure
representation of Dual’s syntax. I call this structure the Enhanced Syntax Tree
(EST). This crucial element in the language’s design is described in this section.

The primary representation of a program in Dual is the EST. Although itself
not directly editable, it can contain references to any number of editable represen-
tations, such as the text and visual ones.

These other representations contain back-references to the EST. Thanks to
this, a change to any of the representations can be propagated to every other
representation.

Every representation must come with:

• A way to translate it to an EST.

• A way to generate it for a given EST.

• A way or ways to manipulate it.

While translating, generating and manipulating, it must be ensured that each
entity of the representation has a bidirectional association to a corresponding EST
node.

For example, for text representation:

• Translation to EST is done with a parser.

• Generation from EST is done with an unparser[65].

• Manipulation is done with a text editor.

31



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

To ensure that the associations are kept, there must be objects that represent
“text fragments”. These objects then must contain references to corresponding EST
nodes and vice versa.

White space characters and comments have no semantic significance, unless
serving as separators could be considered one. After parsing, bracketing characters
also serve no purpose and can be safely discarded, without influencing the meaning
of the program. This is indeed done when constructing an AST from text in most
programming languages.

In case of Dual though, no characters are discarded. Instead, white space, com-
ments, brackets and any other characters are included in the EST, connected to
appropriate nodes. Storing all characters in the EST means that the entirety of
text representation, in structural form, is accessible straight from the syntax tree.
This allows an unparser to recreate it exactly.

Such design greatly simplifies the implementation of and integrates with the
language features such as:

• Automatic indentation. The EST contains all white space. If a new node is
inserted into it, it can be initialized with white space of its siblings and/or
ancestors, etc..

• Documentation comments. Comments can easily be associated with corre-
sponding code blocks (EST nodes), which can be useful for automatically
generating documentation in any format.

• Any expression can be unparsed to its original form straight from syntax
tree, which can be used for debugging. For example, if a Dual program is
built by manipulating visual representation entirely without the use of text
and an error occurs while interpreting it, a single EST node – the one that
contains the erroneous expression – can be unparsed and presented by the
debugger in editable form. This may allow the user to fix the error quicker
than manipulating blocks, without the need to unparse the entire program.

• Any expression can be stringified (serialized) on-the-fly and this string can
be used as a value in the program or stored in a file.

2.8.1 Structural representation of strings

The last feature from the above list provides an interesting way of implementing
strings in the language. Instead as streams of characters, they could be kept in
structural form – as syntax trees. In combination with pattern matching this en-
ables language-native structural manipulation of strings3. For example we could
write:
bind [str ’[A quick brown fox jumps over the lazy dog]]

bind [words [_ _ third -word {rest}] str]

3See: [142] and [59, Section Pattern matching and strings] for similar concepts.

32



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

bind [characters [_ _ third -letter {rest}] third -word]

-- logs "o" to the console:
log [third -letter]

Where words deconstructs a string into individual words and binds these words
to identifiers provided as its arguments. characters performs an analogous oper-
ation on the character-level. The notation {rest} matches zero or more argu-
ments (see Section 2.11 for details). log outputs the values of its arguments to the
JavaScript console.

A downside here is that such representation of strings is not very efficient. A
simple optimization would be to keep the raw form of the string (a stream of char-
acters) as a value in the corresponding syntax tree node. So the raw representation
is extended instead of replaced. Having these two forms alongside each other would
enable the programmer to use the familiar string manipulation methods as well as
structural manipulation without significant performance impact.

2.9 Syntax sugar for function invocations

In order to reduce the amount of closing brackets appearing next to each other
in program’s text, two additional simple notations were introduced. The first is
addition of the pipe special character (|). It is used for single-argument functions.

If a function is invoked with only one argument, we can omit the closing bracket
] and replace the opening bracket [ with |. | can be viewed as a right-associative
“invocation operator”. For example:
foo | bar | baz

is equivalent to:
foo [bar [baz]]

The parser produces equivalent syntax trees for the above cases.
Below I present more examples to illustrate the utility of this syntax. Note that

<=> symbol used in comments means “equivalent to”:
-- compute factorial of 32:
-- <=> factorial [32]
factorial |32

-- find 9th Fibonacci number:
-- <=> fibonacci [9]
fibonacci |9

-- compute sine of pi:
-- <=> sin[pi]
sin|pi

-- compute cosine of the number that is

33



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

-- the result of multiplication of pi and 5!:
-- <=> cos[*[pi factorial [5]]]
cos |*[pi factorial |5]

-- convert 33.2 to an integer (truncate .2):
-- <=> to -int [33.2]
to -int |33.2

-- construct a list with one item ,
-- which is a string "hello":
-- <=> list[’[hello ]]
list|’|hello

Another special character (!) was introduced for analogous use in zero-argument
expressions (procedures):
-- invoke a procedure that changes
-- some state variables in its outer scope:
-- <=> set -initial -state []
set -initial -state!

-- sum two random numbers:
-- <=> +[ random [] random []]
+[ random! random !]

-- bind a value returned by an immediately
-- invoked procedure to an identifier:
-- <=> bind [forty -two procedure [42][]]
bind [forty -two procedure [42]!]

-- evaluates to 42:
forty -two

2.10 Pattern matching
A simple, yet powerful pattern-matching facilities were added to the language,
which further extend its expressive power.

Pattern matching works with bindings, functions, match primitive and macros.
The pattern matching works in a way similar to most other languages that

support this feature (e.g. ML family). The general rules are:

• A literal (strings or numbers are supported) value matches itself:
-- computes factorial of a number:
bind [factorial

of~ [0 1
of~ [n *[n factorial [-[n 1]]]]]

]

-- logs ‘120‘:
log [factorial |5]

34



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

• An identifier (word) matches any value, which is then bound to the identifier:
bind [simple -print of [x log|x]]

-- logs ‘3‘:
simple -print [3]

• A wildcard pattern (_) matches any value, but does not bind:
-- returns its third argument , discards the rest:
bind [get -third of [_ _ x x]]

-- logs ‘3‘:
log [get -third [1 2 3]]

As such it can be useful for discarding some values, depending on other values
or extracting some values from a structure (see next point).

Also the following expression-patterns are supported:

• list or $ is used to destructure lists:
bind [$[_ _ third -element] $[0 1 2]]

-- logs ‘3‘:
log [third -element]

-- it works for arbitrarily nested lists as well:
bind [

$[ _ $[ _ pick _ _] _]
$[’|a $[’|b ’|c ’|d ’|e] ’|f]

]

-- logs ‘c‘:
log [pick]

• Comparison operators (= < <= >= <>) match if a value passes the compar-
ison; it can be viewed as a shorthand notation for simple guards[9, Chap-
ter Pattern Matching Basics, Section Using Guards within Patterns]:
-- returns the sign of a number
-- note: ‘-#‘ is the unary ‘-‘ operator:
bind [sign

of [=|0 0
of [<|0 -#|1
of [>|0 1]]]

]

-- logs ‘-1‘:
log [sign |-77]

Other pattern-expressions are not supported and using them will result in a
mismatch.

35



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

2.10.1 Destructuring

Pattern matching works with bindings, the language allows destructuring assign-
ments and definitions[28]. An example of a such definition would be:
bind [

$[a b $[c d]]
$[1 2 $[3 4]]

]

bind [
$[ _ x y { rest }]
$[’|a ’|b ’|c ’|d ’|e ’|f]

]

-- logs ‘1 2 3 4‘:
log [a b c d]

-- logs ‘b c ["d", "e", "f"]‘:
log [x y rest]

2.10.2 match primitive

The above examples show pattern matching used in function definitions and for
destructuring values by binding their components to identifiers. There is also the
match primitive, which can serve the role of a switch statement from C-like lan-
guages. It is however much more powerful, as any complex values supported by the
pattern matching system can be matched, including lists. This allows switching on
multiple values and in any combination.

The match primitive’s first argument is a value to match and all subsequent
arguments are two-element lists, where the first element is the pattern to match
and the second is the expression to evaluate in case of a match. The primitive
tries the matches in order and only evaluates the expression related to the first
successful match. The subsequent matches are not evaluated.

Here are example uses for match:
bind [state ’|game -on]

-- will execute the ‘play ‘ procedure:
match [state

$[’|game -on play!]
$[’|game -paused display -pause -menu!]
$[’|game -screenshot capture -screenshot !]

]

-- ...

-- note: . is the access operator
-- .[a b c] is equivalent to a.b.c in other languages
bind [$[x y] .[ player postion ]]

36



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

-- we can easily replace complex conditions:
match [$[x x y y]

$[
$[>|0 <|screen -width >|0 <|screen -height]
log|’[player visible]

]
$[_ log|’[player not visible ]]

]

2.11 Rest parameters and spread operator
Another syntax extension that I introduced involves two additional special brack-
eting characters: { and }, which serve several purposes:

• If used in function definitions, they indicate that a function or macro is
variadic – it accepts a variable number of arguments[66].

If a function is invoked with an equal or greater number of arguments than
stated in its definition and the last argument’s name in this definition is
specified between { and } then any extraneous arguments are available in
the function’s body in a list with the name that was specified inside the
curly braces. The order of arguments is preserved. For example:
bind [variadic -function of [a b {args}

log [a b args]
]]

-- logs ‘1 2 [3, 4, 5, 6]‘:
variadic -function [1 2 3 4 5 6]

This is essentially the same as the “rest parameters” mechanism known from
Lisp[13, Section 12.2.3], recently also adopted in JavaScript (as of the EC-
MAScript 2015 standard[33]).

• The above extends beyond function definitions. It works in any place, where
pattern matching works:
bind [$[a b {rest}] $[’|a ’|b ’|c ’|d ’|e]]

-- logs ‘["c", "d", "e"]‘:
log [rest]

This enables non-exact matching. If only the first few elements of a list are
important and a list with variable number of elements is acceptable as a
match, the extra elements can be dropped by using this syntax.

• If used outside pattern matching, curly braces act as an universal list splicing
and flattening operator. If an argument is given to a function surrounded by
curly braces and this argument is a list then it is treated as if every individual
element of that list was provided in its place.

37



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

If an argument in curly braces is not a list, then curly braces behave like the
identity operator and return it unchanged.

There can be multiple arguments inside one pair of curly braces or multiple
curly-braced arguments given to a function. All of these arguments will be
expanded in the way described.

For example:
bind [f of [a b c d e f log [a b c d e f]]]
bind [args $[8 7 6]]

-- logs ‘9 8 7 6 5 4‘:
f[9 {args} {$[5 4]}]

-- or alternatively ,
-- surrounding all arguments with curly braces
-- logs ‘9 8 7 6 5 4‘:
f[{9 args $[5 4]}]

-- curly braces can surround any argument
-- or any sequence of arguments ,
-- regardless of position in the invocation list;
-- logs ‘9 8 7 6 [5, 4]‘:
f[{9 args} $[5 4]]

This works similarly to the spread operator from ECMAScript 2015[34] or
the splicing syntax ,@ used in Lisp’s backquotes[19, Section 2.4.6], [13, Sec-
tion 9.4], but is much more flexible. It can be used in every function or
macro invocation, not just in backquotes. Also, if there is more that one list-
argument that should be spliced, they can be grouped together inside curly
braces and do not have to be individually “tagged”.

Curly braces can also be used as a nicer syntax for the fundamental function
apply:

bind [numbers $[1 2 3 4 5]]

-- evaluates to 15:
apply [sum numbers]

-- also evaluates to 15:
sum[{ numbers }]

• They also serve as string interpolation notation. When a string is evaluated,
all expressions surrounded by { and } that appear inside this string are
evaluated and spliced into its value before the value is returned.

For example:
bind [name ’|Bill]

-- logs ‘Hello , Bill.‘:
log [’[Hello , {name }.]]

38



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

This gives us a very convenient notation for string interpolation, similar to
e.g. template literals in JavaScript[35].

To escape curly braces inside a string we can double them or use the escape
character \:
-- logs ‘Hello , {name}.‘:
log [’[Hello , {{name }}.]]

-- also logs ‘Hello , {name}.‘:
log [’[Hello , \{name \}.]]

There is also a special type of string – an HTML string, where interpolation
notation is the reversed – double braces cause substitution, single braces do
nothing:
bind [name ’|Bill]

-- logs ‘<h1 >Hello , Bill.</h1 >‘:
log [html ’[<h1>Hello , {{name }}.</h1 >]]

-- logs ‘<h1 >Hello , {name}.</h1 >‘:
log [html ’[<h1>Hello , {name}.</h1 >]]

This is to enable embedding CSS and JavaScript code inside those strings,
without having to constantly escape brace characters.

• Related to the above point, curly braces are used in code’ strings that are
returned by macros. They work similarly to curly braces in strings, except
that the substituted values should be unevaluated expressions (syntax tree
nodes). Also, code strings are never interpreted as streams of characters, and
are always stored as syntax trees.

This use of curly braces is very similar to Lisp’s unquote syntax (,)[12,
Section 1.3.8].

The next section (2.12) provides examples and explanation of macros in Dual.

2.12 Macros
The experimental approach to Dual’s design gave rise to a very interesting feature,
which could be described as first-class just-in-time expanded macros.

Macros in Lisp-like languages are different than the macros provided by the C
preprocessor or similar macro systems. They are much more powerful[71].

Essentially, macros are a way to transform code from one (usually much terser)
form to another. They can extend the language’s syntax, create new syntactical
constructs or Domain-Specific Languages (DSLs)[4, Chapter 3].

Lisp-like macros are integrated with the language and operate on its code or,
more precisely, syntax trees4. Such a macro can be described as a function that

4For brevity I will sometimes use the term “code” when I mean a syntax tree.

39



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

takes code as arguments and returns code as a result. This code is then expanded
into the syntax tree, replacing the macro. A macro can perform arbitrary compu-
tation while it is evaluated, just like a function. Macros are written in the same
language as the code they transform.

2.12.1 First-class

Unlike traditional Lisp macros, in Dual macros are first-class, because they are
treated like any other value.

In order to support first-class runtime macros, a Lisp interpreter can be modi-
fied as follows[124]5:

• Primitives are moved into the top-level environment6. They thus are no longer
treated as special case by the eval function.

• A new primitive, macro is added, which is essentially equivalent to lambda,
except that it produces macro values instead of function values.

• The apply function is now responsible for checking the type of an expression’s
operator, which can be a primitive, a macro or a normal expression. This
determines whether the arguments should be evaluated before application.

This results in a simpler, more uniform and at the same time more powerful
interpreter. A major advantage is that:

Because of their first-class nature, first-class macros make it easy to
add or simulate any degree of laziness[124].

A macro in Dual is defined with the macro primitive and bound to a name with
the bind primitive:
-- defines an ‘unless ‘ macro ,
-- which works like the ‘if ‘ primitive ,
-- except that the provided condition is negated
bind [unless macro [condition body alternative

code ’[if [not[{ condition }] {body} {alternative }]]
]]

bind [a 100]

-- will log "a greater than 3":
unless [>[a 3]

log|’[a less than or equal to 3]
log|’[a greater than 3]

]

Because a macro is a first-class value, there is no need for a special primitive for
defining macros, such as defmacro in Lisp[19, Section 3.8, Macro DEFMACRO].

5Recall a brief description of an implementation of a Lisp interpreter from Section 1.2.
6The top-level environment contains the basic functions and values that are available to every

program.

40



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

2.12.2 Just-in-time

Macros in Dual are just-in-time expanded, because the expansion happens at run-
time, when a macro is encountered and evaluated by the interpreter. There is no
separate macro-expansion time.

For simple macros the expansion works as follows:

• A macro invocation is encountered by the interpreter.

• It is expanded into code by evaluating it.

• The node in the EST containing the macro invocation is permanently re-
placed by the expanded expression.

• The expanded expression is evaluated and its value is returned as the value
of the invocation.

• Next time when the interpreter arrives at the same point in the EST, the
macro will already be replaced by the expanded expression. Thus, the cost
of macro-expansion is one-time.

Macros in Dual can also return other macro values. If a macro returns a macro
value instead of code, this value is evaluated. If, in turn, the result of this evaluation
is another macro value, this one is evaluated as well, and so on, until a code value
is returned. It then is expanded as described above.

This feature nicely composes with Dual’s variation of Lisp’s syntax in terms
readability, particularly by reducing the amount of adjacent closing brackets in
the source code and introducing blocks without the need for explicit use of the do
primitive.

As an example. the below listing presents a macro named if*, which defines
a slightly different syntax for the if primitive. This syntax wraps the condition,
consequent and alternative parts of the if in separate blocks delimited by []. The
condition is required to be an infix expression in the form a operator b. The
consequent and alternative blocks take care of wrapping all expressions within
them in do blocks. This makes it more convenient and less error-prone to write
complex if expressions:
-- defines the ‘if*‘ macro
-- it returns a macro , which returns a macro ,
-- which returns another macro
-- arguments of each of these macros
-- are then spliced in the appropriate places
-- in the code that creates the resulting ‘if ‘ expression:
bind [if* macro [a op b

macro [{then}
macro [{else}

code ’[if [apply[{op} {a} {b}] do[{then}] do[{else }]]]
]

]
]]

41



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

-- the macro is used as follows:
if* [a < b][

log [’[a is less than b]]
a

][
log [’[b is less than or equal to a]]
b

]

-- the above expands to:
if [<[a b] do [

log [’[a is less than b]]
a

] do [
log [’[b is less than or equal to a]]
b

]]

Note that the macro gets rid of the explicit do expressions. It essentially defines
a new language construct, which has the following template:
if* [--[condition: ] <value -1> <comparison -operator > <value -2>][

-- consequent block:
<expression -1>
<expression -2>
-- ...
<expression -n>

][
-- alternative block:
<expression -1>
<expression -2>
-- ...
<expression -n>

]

2.12.3 In combination with | and !

The combination of the macro system and the syntax sugar for zero and single
argument functions (| and !) helps reduce the amount of bracketing characters
even further.

For example, if we define a match* and of* macros as follows:
bind [match* macro [{args}

macro [op
code ’[apply [{op args }]]

]]

bind [of* macro [{args}
macro [{body}

macro [alternative
code ’[of~ [{args} do[{body}] {alternative }]]

]

42



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

]
]]

Then the following expression:
bind [x 99]

-- will log "x is greater than one":
match* [x]
| of* [<|0] [log|’[x is negative ]]
| of* [0] [log|’[x is zero]]
| of* [1] [log|’[x is one]]
| log|’[x is greater than one]

Would be translated into the following:
bind [x 99]

-- will log "x is greater than one":
apply [

of~ [<|0 log|’[x is negative]
of~ [0 log|’[x is zero]

of~ [1 log|’[x is one]
log|’[x is greater than one]

]
]

]
x

]

Notice that the match* macro does not use or need the native match construct
at all.

The resulting syntax is somewhat similar to ML-style[63, Section Algebraic
datatypes and pattern matching] languages. And yet it there is no complex gram-
mar that defines this syntax. It is handled with a very simple parser.

This shows that a few simple, but general syntax rules and a powerful macro
system, can be a very flexible tool for extending syntax.

43



CHAPTER 2. DUAL PROGRAMMING LANGUAGE

44



Chapter 3

Dual’s development environment

This chapter provides a design for Dual’s development environment. This is not a
formal specification. I try to provide an idea of how I imagine a good development
environment should look like to maximize usability and be appealing to experienced
as well as semi-experienced programmers.

These are general guidelines that may be applied to improve existing visual
programming language systems in terms of usability.

A proof-of-concept prototype implementation that, to a degree, conforms to
the design outlined here, is described in Chapter 4. In that implementation I focus
on the critical features that are necessary to meet the goals of this thesis.

3.1 Overview

The overall design tries to merge features of modern code editors, such as Atom[80],
Brackets[74] or Visual Studio Code[88] with visual programming language editors,
such as the Blueprint Editor from Unreal Engine 4[109].

The environment is intended to work online, similarly to Integrated Develop-
ment Environments such as Codeanywhere[77] or Cloud9[76]. It should also work
as offline, like Scratch’s offline editor[44].

3.2 Design goals

I set the following general goals that the designed development environment must
meet:

• In terms of usability, it should be easily usable with minimal effort from the
user to install it or set it up.

• The user interface and its idioms and metaphors[139] should be familiar for
an experienced user and easy to learn for an inexperienced one.

• The editor should support the text and visual representation.

45



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

3.3 Requirements

In order to meet the above goals, I set down the design requirements outlined in
this section.

3.3.1 Usability

The environment should be a web application. It should have minimal external
dependencies.

It should be separated into the following components:

• A project manager, which should be capable of managing local as well as
remote projects. The environment identifies projects by paths, which obviates
the need for project files.

For example, if user selects a path such as /projects/my-project on her
local file system, it will be registered as the most recently opened project and
opened in the editor. All files contained in the my-project folder would be
a part of the project.

This is an idiom used in modern code editors, such as Brackets or Visual
Studio Code. However, project files could be optional.

• A code editor, which itself consists of two parts:

– A text editor with syntax highlighting, auto-completion, auto-indentation,
etc. for Dual. The text editor should conform to the design outlined in
Section 2.8.

– A visual editor able to manipulate a visual representation of the EST
with autostructuring. It should also conform to the design outlined in
Section 2.8.

3.3.2 User interface

The general layout of the editor should conform to universally accepted (de facto)
standards where possible. As illustrated in Figures 3.2, 3.3 and 3.1, different code
edtiors feature a very similar layout. Below I aim to enumerate its general features.

The layout of Dual’s environment should include the following:

• A title bar, which contains the name of the file that is currently being edited
(focused), a path to the file and the name of the editor.

• A menu bar at the very top of the window screen, which contains menus such
as File, Edit, View, Help, each with appropriate options and submenus.

• A left panel with a tree view of all the files that belong to the currently open
project.

46



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

• Next to the left panel, a main area, where the contents of the currently open
file are displayed. There may be a split view functionality, where a few files
can be displayed at once next to each other. There also may be a tab bar
above a file’s contents that contains buttons that allow the user to quickly
switch between several open files.

• A bottom panel that can contain an interactive console, similar to JavaScript
console in web browsers. The panel may also display various status informa-
tion.

• A status bar at the bottom of the screen. It may display short information
about current position in a file, text encoding or indentation size.

• A text input that is an interface for a flexible global search facility, which can
search through all editor options and menus, as well as the library of available
programming language constructs: all primitives, basic functions and macros
as well as all user-defined functions and macros. The search functionality
should be available at all times. It should appear at the top of the screen and
may be toggleable.

Figure 3.1: A screenshot from the Brackets editor

47



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

Figure 3.2: A screenshot from the Visual Studio Code editor

Figure 3.3: A screenshot from the Atom editor

48



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

3.4 Text editor
The text editor should have all the standard capabilities of modern code editors,
like the ones outlined in Section 1.2.2:

• Auto-indentation.

• Syntax highlighting.

• Code folding. Any code between a matching pair of brackets should be col-
lapsible.

• Code navigation. Any identifier or module path in the source code should be
a link to an appropriate declaration or definition, if such is available.

• Context-sensitive auto-completion. This includes automatic pairing of brack-
ets and correction of typing errors.

• Find and replace functionalities with support for regular expressions.

• The source text should be processed by the editor as a two dimensional grid
of characters, with each row (line) and column numbered. Any rectangular
area in this grid should be selectable.

• Related to the above: editing of multiple lines in parallel. If an area is selected
that spans multiple rows, each row has its own text cursor.

All of the above features should be integrated with the language and make use
of its parser and the syntax tree generated by it.

3.5 Visual representation and its editor
In order to address some of the most common criticisms of VPLs, outlined in
Section 1.2.5 I set the following general design requirements for the visual repre-
sentation:

• It should combine the familiar appearance of the “line-connected block-based”
VPLs with the structure of “snap-together block-based” VPLs (see Section
1.2.3). The former family is exemplified by the Blueprints Visual Scripting
system of Unreal Engine 4[110] and the latter by MIT Scratch[43, 60].

• It should be no harder to use than the text representation. Ideally a visual
editor should add useful capabilities, without taking away these provided by
text editors.

• Its appearance should be fully customizable.

Moreover, Dual’s visual representation should satisfy all the requirements out-
lined in 2.8:

49



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

• It should be fully mappable to the EST. There should be a distinguishable
and manipulable visual element for every EST node. Such an element should
contain a reference to the node (and vice versa).

• There should be ways to perform the following actions with the visual editor:

– Insert new nodes into EST.

– Remove existing nodes from the EST.

– Modify existing nodes in the EST.

– Replace existing nodes and subtrees in the EST.

– Move nodes and subtrees to different locations in the EST.

– Select and manipulate multiple arbitrary nodes and subtrees in the EST.

In short, the visual editor should provide means to perform the same abstract
operations on the EST that are possible when editing text and possibly more.

Some operations on raw text should also be reflected in the visual represen-
tation. For example the Find option. Searching through text should highlight the
visual elements that correspond to the EST nodes that are connected to the text
that contains the searched phrase. Regular expression based searching should also
be possible. Replacing text with the Replace option should be reflected in the
visual representation.

There should be a possibility to temporarily disable a representation by dis-
connecting it from the EST. Any changes made to other representations will then
not be propagated to this representation. A disabled representation should become
read-only until it is enabled. When it is enabled it should be updated to reflect the
current state of the EST. At least one representation must be enabled at all times.

There should be a context-sensitive auto-completion feature and an easily ac-
cessible library of functions and primitives with documentation. User-defined func-
tions should be added to the library and auto-completion database upon definition
and removed from it when they are removed from the source code.

The library could look similarly to the one in Scratch, where the user can
select puzzle pieces from several categories (Figure 3.4). The categories should be
the names of modules, where each function is defined. Similarly, submodules should
have their respective subcategories.

The auto-completion context menu could resemble the one from the UE4’s
Blueprint editor (Figure 3.5). If there is many auto-completion possibilities, they
should be presented as a tree, with categories from the library as root nodes.

50



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

Figure 3.4: MIT Scratch programming language editor; the left panel contains a
library of language constructs. These are ordered into categories (selectable with
buttons at the top of the panel); screenshot from[150]

51



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

Figure 3.5: The context menu from the UE4’s Blueprints editor; each item is
a category, which can be expanded by clicking on it into subcategories, which
eventually lead to individual nodes. Clicking on a node name inserts it into the
program; screenshot from[151]

52



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

3.5.1 The design process

Figures 3.6, 3.7, and 3.8 show mock-ups that were produced when designing the
visual representation.

The colored squares with letters inside are place-holders for icons. The user
should be able to click on those icons and fold the blocks into a more compact
form, hiding the names and excessive text. This should be possible at the level of
individual blocks, whole subtrees or the entire program – similarly to code folding
in text editors. This allows to have a big picture and general relationships between
nodes always visible and at the same time gives an ability to focus on the details
of the part at hand.

The design contains the following visual elements:

• Rectangular blocks, which represent expressions or individual nodes of the
EST. Those in turn consist of:

– A header, which contains an icon and the name of the expression’s op-
erator. Next to the header a documentation comment may be displayed.

– Slots, which are the numbers or names of the arguments followed by an
icon. Below these documentation comments may be displayed.

– Additional buttons, which may be used for example to add more slots
to variadic expressions.

• Connections between slots and blocks, which could also contain some useful
annotations. The proposed design places type annotations there. These con-
sist of the name of the type followed by an icon that represents this type.
Connections actually have two parts: one extending from a slot, which in this
case would contain the argument’s type annotation, and one extending from
a block header, which would contain a type annotation of the expression’s
return value.

The visibility of the documentation comments below the slots associated with
the arguments could be toggleable by clicking on them. This should work on an
individual, subtree or global scale, similarly to icons. This idiom of individual-
subtree-global should be applied to all options, where it is sensible.

The user should have an easy way of configuring whether or not and what
information should be displayed. By folding enough of the text elements into icons
the visual representation could actually be made more compact than the text form.

53



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

Figure 3.6: Various early designs

Figure 3.7: This design has the interesting property of visually illustrating the
program flow with arrows

54



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

Figure 3.8: One of the most recent designs

55



CHAPTER 3. DUAL’S DEVELOPMENT ENVIRONMENT

3.6 Additional features
Both, the text and the visual editor should provide an interface for debugging
programs. This entails the abilities to:

• Set breakpoints on individual lines of code (applicable only to the text editor).

• Set breakpoints on individual expressions (applicable to both).

• Pause program execution and step over, in and out of individual expressions.

• Inspect program state. It should be possible to easily access the values of
individual expressions and possibly change them.

• Signal errors in a specific and readable manner.

Other features that aid debugging could also be useful. For example:

• The ability to record program execution and rewind it, inspecting individual
steps.

• Support for exceptions.

• Support for remote debugging.

• Profiling facilities.

The editor should also provide the following additional features:

• Integration with version control systems and services that provide it, such as
GitHub.

• Integration with text comparison and diff tools.

• Integration with linting tools.

• An Application Programming Interface for plugin creation.

• “Intelligent” mechanisms that display contextual hints and suggestions.

56



Chapter 4

Prototype implementation

This chapter describes how the essential parts of the designs outlined in previous
chapters were fulfilled in practice by implementing a proof-of-concept interpreter
and development environment.

4.1 Programming discipline
The prototype was implemented largely in the spirit of exploratory programming:
“the kind where you decide what to write by writing it.”[81].

This approach in combination with a dynamic and flexible language, such as
JavaScript enables one to quickly transform ideas to working prototypes and shape
them as one goes along. But the usefulness of this method is limited, as it may
quickly produce fairly low-quality code, as it is not focused on future maintain-
ability.

Most of the features of the prototype system are implemented as a proof-of-
concept, were the main focus is making them work. Performance and other con-
siderations are of low priority. Some features are more refined than others in order
to fulfil the major goals of this thesis, one of which was to implement a working
non-trivial application in the language.

4.2 The language
The language’s parser and interpreter are implemented in JavaScript. The parser
conforms to the grammar specification described in Section 2.2.1 with all of its
extensions defined in Chapter 2. The parser emits events while processing every
language construct. These events carry individual syntax tree nodes with informa-
tion about the current position in the source string. The events are then captured
by the environment to attach additional information to EST nodes, such as ref-
erences to elements of the visual representation (DOM nodes), and objects that
represent text fragments.

The prototype implementation of the language contains all the features de-
scribed in Chapter 2, with the following exceptions:

57



CHAPTER 4. PROTOTYPE IMPLEMENTATION

• Macros are not implemented.1

• There are two primitives, which produce function values: of and of-p. The
second has the same meaning as of described in Chapter 2. The first has the
same meaning, except that it does not use pattern matching when binding
names to arguments. This primitive requires that all the names must be
words.

• Destructuring is implemented only for definitions (it works in bind) and not
for assignments (it does not work in mutate). Pattern matching could easily
be extended to mutation, although I have found it sufficient to be usable
only in definitions and ended up not implementing it for assignments in the
prototype.

• Comments are treated and attached to EST nodes as streams of characters.
Nesting and balancing of brackets is taken into account in multi-line com-
ments, but their tree-like structure is not preserved.

• Strings are not treated specially by the parser. They are stored and manip-
ulated as syntax tree nodes, not as streams of characters. This means that
the optimization described in Section 2.8.1 is not applied. The performance
penalty is acceptable in the prototype implementation.

• The escape character \ has no special meaning. To substitute a special char-
acter in a string, the following built-in values are defined:

(left -bracket) -- escapes "["
(right -bracket) -- escapes "]"
(left -brace) -- escapes "{"
(right -brace) -- escapes "}"
(pipe) -- escapes "|"
(bang) -- escapes "!"

So ’[(left-bracket)hello(right-bracket)] would evaluate to: "[hello]".

The interpreter is implemented naively. Its main part is the recursive evaluate
function. The function accepts an expression and an environment. The expres-
sion can be a number literal, an identifier or an invocation. Each of these types is
evaluated differently:

• If it is a number literal, it evaluates to its corresponding numerical value.

• If it is an identifier (a name), it is looked up in the environment and the
corresponding value is returned. If it is not found in the environment, an
error is thrown.

1In fact, they partially are implemented, but are not usable. For example, there is a macro
primitive available, which produces macro values. But it should not be used, as these macro
values are not treated specially by the interpreter, so using them will not have the desired effect.

58



CHAPTER 4. PROTOTYPE IMPLEMENTATION

• If the expression is an invocation then it is evaluated according to its operator:

– If the operator is a string operator ’ or html’, then first any variable
substitutions are performed and then the corresponding string value is
returned.

– If the operator is a primitive, then the expression’s arguments are not
evaluated and passed to this primitive, which may or may not evaluate
them. The result of the primitive’s application is returned.

– If the operator is an expression, then it is evaluated. Then its arguments
are evaluated. If any of those arguments is a substitution expression (i.e.
it is wrapped in curly braces {}) then it is expanded before proceeding.
When all of the arguments are evaluated, the operator is applied to
them and the result of this application is returned.

4.3 The environment
The development environment’s prototype implementation provides only the few
critical features that are necessary to demonstrate how complete integration and
interchangeability of the text and visual representations of the language can be
achieved.

The prototype of the environment has elements of a web application in its
implementation. However, it is prepared only to work offline, on the user’s machine.

The system is implemented with minimal dependencies, so it can be easily
installed and so that a greater level of integration can be achieved by having more
control over every part of the system.

The only required dependencies for the basic functionalities of the prototype
to work is a web browser and the CodeMirror library. An additional dependency
is the Node.js environment – for running the stub of the project manager.

59



CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.1: Dual’s project manager

Figure 4.2: Dual’s editor

60



CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.3.1 General architecture

The development environment’s web-application-like architecture is reflected in its
three main components:

• The server part, implemented in JavaScript on top of Node.js. This part’s
function is mainly to enable access to the user’s file system, so that any local
folder can be opened as a project. Modern web browsers restrict access to
the local file system, as dictated by their security policy. The server part also
handles persisting changes to files and configuration.

• The project manager part, which communicates directly with the server part.
The connection is maintained over a WebSocket[39]. This part provides access
to user’s file system via a custom folder selection interface. Basic configura-
tion of server communication, such as changing the address and ports is also
possible. Once a project is selected, the user may open it in the editor part.
Figure 4.1 demonstrates the interface of the project manager.

• The editor part, which is the main component and can function as a stand-
alone application. It can communicate with the server indirectly, through the
localStorage mechanism[41].

The project manager and the editor, which can be considered the front-end
parts of the system are designed to be Single-Page Applications[62]. The project
manager exchanges JSON messages with the server through a WebSocket. This is
used for updating the view with dynamic data. In order to facilitate the manipu-
lation of the HTML structure of the page, which is the main application’s view,
I implemented a very simple web application framework, which binds the data
from the server with the data on the client and the Document Object Model[3,
Chapter 13].

Figure 4.2 shows an overview of the editor prototype’s window. The basic layout
is modeled after the aforementioned code editors. At the top of the window is
the menu bar, below it a mockup of a global search input (not implemented).
The left panel contains basic controls for selecting examples, invoking the parser
and interpreter, toggling application view and adjusting the scale of the visual
representation.

The browser’s JavaScript console is used as the standard output. There is no
built-in console.

The following options are implemented in the prototype:

• Available from the menu bar:

– File->Save, which saves the current content of the text editor to a file
named save.dual in editor’s root directory. This only works if the
server-side part of the environment is running. Otherwise the source
will be saved only to browser’s internal storage.

61



CHAPTER 4. PROTOTYPE IMPLEMENTATION

– In the Edit menu: Undo, Redo, Cut, Copy, Paste and Select All options
are supported. Note that by default web browsers restrict the access
to the user’s clipboard, so for Copy and Paste the standard key short-
cuts should be used (Ctrl-C, Ctrl-V). All other conventional keyboard
shortcuts are also supported, thanks to the CodeMirror library.

• Available from the left panel:

– The options in the Examples submenu cause a corresponding source file
to be loaded into the editor. This is for demonstration for the purposes
of this thesis.

– The Options submenu allows the user to invoke the parser and the
interpreter separately or in combination as well as toggling between
the “page” (also known as “application”) and visual editor views. The
application view contains an embedded web page (iframe), which can
be manipulated by a Dual application. This is used to display the game
view in the Pac-Man clone example.

– The Visual scale submenu changes the size of the blocks in the visual ed-
itor. This demonstrates how manipulating one CSS property influences
the rendering of the visual representation.

Some options have descriptive captions available that appear when the mouse
cursor hovers over them.

62



CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.3.2 Text editor

The text editor is built on top of the CodeMirror framework[82]. This provides all
basic features of a text editor, such as automatic indentation, syntax highlighting
(a custom syntax highlighting mode for Dual is defined), line numbering, block
selection or parallel editing of multiple lines.

The text editor is integrated with the environment. The fragments of text
corresponding to EST nodes in the text representation are tracked by CodeMirror’s
TextMarker objects. These facilitate tracking and propagating any changes to and
from this representation, as well as highlighting of the currently focused expression.

If a position of the text cursor in or the contents of the source change, a frag-
ment of text corresponding to the appropriate EST node is highlighted. Also the
corresponding subtree in the visual editor is highlighted. It works also in the other
direction – when a node in the visual editor is selected, it is highlighted along with
the corresponding text fragment.

This demonstrates the core functionality of the system: it is “aware” at all times
of currently focused meaningful part of the code, corresponding to an EST node.
This is reflected in both representations associated with the EST.

Because every node in the EST is linked in both directions with a corresponding
abstract element in a representation, any change to the element can be reflected in
the node and, through the EST, in all other associated representations. This makes
the system accurate and fast, as every change happens in an isolated context, which
does not have to be reestablished every time a modification is made.

Figure 4.3: Visual editor’s context menu

63



CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.4 Visual editor and representation
The visual representation is implemented in a in terms of a DOM tree, which
mirrors the EST: every EST node has a corresponding set of DOM nodes. Thanks
to this, any actions performed on the DOM can be tracked through the standard
browser-implemented interface. This is done by attaching click event handlers to
relevant nodes. Such an event triggers the following:

• A corresponding EST node is “focused” by the system.

• The visual node is highlighted.

• A context menu appears similar to that depicted in 4.3.

The context menu depicted in Figure 4.3 has all the basic options for manipu-
lating the visual representation. These perform their corresponding action on the
currently focused node and propagate it to the text representation. The options
are named Replace, Add, and Remove.

The Remove option simply removes the selected node and its subtree from the
DOM, the EST, as well as the associated text fragment.

The Add and Replace options make use of the small text-editor area next to the
context menu. It contains a predefined list of names of some of the possible nodes
that can be inserted. Selecting any of the names causes a template for the new
node – in the form of an editable code snippet – to be inserted into the text-editor
area. Such a template can be quickly adjusted by the user before inserting.

The predefined list of names is a stub implementation of the context menu
feature described in Section 3.5

The user may also type in raw code into the text box, without selecting any
templates. After entering the code and selecting the appropriate option, the text
is parsed, transformed into TextMarker, EST, and DOM representations. Then all
the versions of the fragment are inserted in appropriate places.

The list of possible nodes displayed along with the context menu is implemented
in terms of a simple auto-complete functionality on top of CodeMirror. Every item
in the auto-complete list is associated with a fragment of code, which is basically
a signature of the corresponding function. User-defined functions could be easily
automatically added to this list by extracting their signatures from definitions.

The visual representation is composed purely out of HTML and CSS, which
makes its appearance fully customizable.

64



Chapter 5

Case study

In order to examine and demonstrate the capabilities of the prototype implemen-
tation, I implemented a Pac-Man clone in Dual. This chapter describes the results
of this test.

Implementation such non-trivial application allowed me to test the language
design and establish which features are the most useful in practice.

Figure 5.1: A screenshot from the game

65



CHAPTER 5. CASE STUDY

5.1 The game
The implementation described here is a port of my earlier clone of the game, which
was written in Links[79], a functional language.

The mechanics of the game are slightly changed compared to the original. The
maze of corridors is replaced by a maze of “planets”, which are connected to each
other. Pac-Man and the ghosts are in constant motion, as they orbit the planets,
because there are no walls and 90-degree turns, which can stop them. Figure 5.1
shows a screen shot from the gameplay.

5.1.1 Main loop

A typical game loop in a modern JavaScript game[22] relies on the native method
requestAnimationFrame[42]. This method takes a single argument, which is a
function callback. This function is invoked by the browser before it repaints the
contents of the window. Thus, it allows the game rendering to be synchronized
with the browser.

The callback invoked by requestAnimationFrame receives a timestamp, which
specifies the time of the repaint event. Ideally and under the most common cir-
cumstances this happens 60 times a second.

I implemented the game loop in Dual as follows1:
-- [1] the amount of milliseconds between game state updates:
bind [tick -length 50]

-- the main loop function:
--[

arguments:
-- current game state:
game -state
-- time of the last game state update:
last -tick
-- the time of the current invocation of the loop:
current -time

]
bind [main -loop of [

game -state
last -tick
current -time

do [
-- [2] schedule the next iteration of the loop
-- using requestAnimationFrame:
async [

.[ window requestAnimationFrame]
of [next -time

main -loop[
game -state

1Only the essential parts are shown in the listing, for the complete implementation, see the
src/pillman.dual file in the DVD attached to this thesis.

66



CHAPTER 5. CASE STUDY

last -tick
next -time

]
]

]

-- the timestamp of the tick after the last tick:
bind [next -tick +[last -tick tick -length ]]

-- counts how many state updates should be
-- performed in this iteration:
bind [tick -count 0]

-- if the current time is past the timestamp
-- of the next tick , the above counter should be
-- incremented; possibly more than by one ,
-- if the difference is a multiply of tick -length:
if [>[current -time next -tick] do [

bind [time -since -tick -[current -time last -tick]]
mutate [

tick -count
.[math floor][

/[time -since -tick tick -length]
]

]
] _]

-- [3] perform the calculated amount of game state updates
:

bind [i 0]
while [<[i tick -count] do [

-- keep track of the time of the last tick:
mutate [last -tick +[last -tick tick -length ]]

-- [4] invoke the function that updates the game -state
:

mutate [
game -state
main -game -logic[game -state input -queue]

]

mutate [i +[i 1]]
]]

-- [5] if there were game state updates , redraw game
screen;

-- else do nothing:
if [>[tick -count 0]

draw[
game -state
current -time
.[ window performance now]!

]
_

67



CHAPTER 5. CASE STUDY

]
]

]]

The places in the above listing that require closer examination are marked with
comments that contain a number in brackets, such as [1]. These comments are
placed above the first line of the important fragment.

Each item on the below numbered list refers to the appropriately marked piece
of code, as in 1. refers to [1], 2. refers to [2] and so on:

1. The global variable tick-length is set to 50. It determines the frequency
of game updates. 50 milliseconds translates to 20 Hz or 20 FPS (Frames
Per Second). It turns out that the value of this variable very significantly
determines the performance of the application and influences it in interesting
ways, described later in ths chapter.

2. The first thing that happens in the main loop is a call to the async primi-
tive, which schedules the next call to the main loop to happen in the next
animation frame. This asynchronous recursive invocation ensures that the
simulation runs continuously. The last argument to the next main loop invo-
cation is next-time. It contains the timestamp of the next frame, provided
by requestAnimationFrame.

3. The while loop performs game state updates. The longer the period since the
last call to main loop, the more times it will execute.

4. The game state updates are performed by the main-game-logic function.

5. Drawing happens only if there were game state updates in the current main
loop iteration. Otherwise a frame is essentially dropped.

5.2 Performance

I encountered significant problems with performance of the application. In order to
avoid unnecessary inflation of the volume of this thesis, I will not go into details,
but outline the main points that explain the issues.

The game showed problems with performance fairly early into the implementa-
tion. Initially I set the value of the tick-length variable to 16.67 (milliseconds), to
achieve a frame rate of 60 FPS. When I it with the draw function redrawing every
yellow dot on the screen every frame, it rendered the application unresponsive.

In order to make the game run smoothly, I had to introduce an optimization
where only the changed portion of the screen was redrawn each frame. I also had to
decrease the value of tick-length, lowering the expected frame rate. This turned
out to be different for different browsers.

For Chrome the value of tick-length, which allowed the game to run smoothly
was 50. This means that an updates were happening every 50 milliseconds or at a

68



CHAPTER 5. CASE STUDY

frame rate of 20 FPS. Lower values caused the frame rate to destabilize and drop
significantly on average.

In Firefox the application ran smoothly when tick-length was set to 75. This
gives a frame rate of about 13 FPS. The performance in this browser was overall
significantly worse than in Chrome.

I investigated the reason for the slow performance and the difference between
Chrome and Firefox browsers with their built-in profilers. This showed that the
slowdowns were caused by JavaScript’s garbage collector, which was cleaning up
large amounts of memory very often, thus pausing the execution.

The reason for this lies in the simple architecture of the interpreter. It works
by recursively invoking a function that evaluates an expression. First the topmost
expression (the root of the syntax tree) is evaluated. Then its each of its arguments,
which are themselves expressions that have other expressions as arguments. This
quickly results in a big tree of recursive calls on the call stack.

While the function that evaluates an expression is running, JavaScript’s event
loop is blocked, preventing any events from being handled and any other code from
running.

Moreover, each of the stack frames contains references to various data, even
though most of it is not relevant. But since it is referenced, the garbage collector
cannot release the memory that the data takes up.

The collection can happen only when a whole syntax tree is evaluated and the
stack is again empty.

The more calls in a single frame to the function that updates the game state,
the more garbage to collect. This results in the collection pauses being longer.
Because of that the frame rate drops.

The different patterns between Firefox and Chrome are caused by different
garbage collection strategies[30, 106].

The general pattern seems to be that in Chrome the collections are more fre-
quent, regular and predictable than in Firefox, which results in better performance,
higher frame rate and smoother appearance of the game.

5.3 Possible improvements
To fix the described performance issues, the language’s interpreter should be imple-
mented in a way that takes into account the characteristics of the host language’s
environment. In case of JavaScript some of these are:

• The event-loop-based concurrency model. In JavaScript an iteration of event
loop should run as fast as possible to achieve the best performance.

An interpreter should not block the loop by recursive evaluation. The eval-
uation function should instead be interruptible. This could be achieved in
multiple ways. One, which I experimented with2, is transforming the func-

2The file dist/iterative-evaluate.js contains an implementation of evaluate function
that was used in earlier prototypes of the interpreter.

69



CHAPTER 5. CASE STUDY

tion into an iterative version by emulating the call stack. In this implemen-
tation, the function contains a variable that holds the stack frames for its
own recursive invocations.

The function can thus pause evaluation between calls to itself, which should
be asynchronous (similarly to the main-loop described in Section 5.1.1) and
not recursive. This releases the event loop.

Explicit control of the call stack allows trivial implementation of debugging
facilities, since evaluation can now be paused at any time.

• Automatic memory management with a garbage collector. An interpreter
should create as little garbage as possible, should be free of memory leaks
and possibly should manage memory “manually”, using object pools or similar
patterns.

An entirely different approach to improve performance would be compilation
of the language to bytecode, straight to JavaScript or even to asm.js, a highly-
optimizable low-level subset of JavaScript[14].

5.4 Conclusion
Dynamic languages with a garbage collector allow a programmer to write code
without worrying much about memory management or other low level considera-
tions. But when it comes to performance and robustness this approach shows its
downsides very quickly.

The performance issues that I have encountered when implementing the Pac-
Man clone, which are described in this chapter are very much related to the char-
acteristics of the JavaScript environment. Notably the event loop and the garbage
collector, which has different implementations with varying performance profiles
across browsers. This shows in the performance differences when comparing differ-
ent web browsers.

An interpreted language implemented without caring about low-level mech-
anisms, such as memory management is not suitable for writing performance-
intensive non-trivial applications, such as simulations or computer games.

This case study shows one of the disadvantages of exploratory programming.

70



Chapter 6

Comparisons to other VPLs

This chapter compares Dual to the Blueprints Visual Scripting system of Unreal
Engine 4 and to MIT Scratch to better illustrate the improvements that the pre-
sented design provides.

6.1 VPLs: scripting languages

All VPLs are either DSLs or scripting languages. There is no general purpose
VPL[136, 99].

General characteristics of a scripting language are[125, 61, 73, 140]:

• It is flexible and in terms of being able to perform

• It is usually dynamically typed

• It has a library of basic functions

• Because of the above, is suitable for rapid prototyping

• It complements a non-scripting language

6.2 MIT Scratch

Scratch is an educational programming language. Although it is not explicitly
called a scripting language, it has characteristics of one and uses the term “script”
to refer to the programs created in it[45].

6.2.1 Issues

Being intended for educational purposes, Scratch has a very limited set of features.
Arguably too limited. Some of its main shortcomings are:

• No support for first-class or higher order functions.

71



CHAPTER 6. COMPARISONS TO OTHER VPLS

• Limited file I/O.

• Implemented in ActionScript, which limits its portability and usability.

• Does not support complex data structures. Only one-dimensional arrays,
known as “lists” are supported.

• String manipulation capabilites are limited.

• Limited support for object-orientation.

• No text representation.

All in all, Scratch is not really usable outside of education. Which is not a
problem in itself, since it is designed as strictly for that. But still, it is far from
perfect even in this application.

The validity of this statement is reflected in the fact that there exists a less
popular derivative, called Snap!, which does partially address Scratch’s issues. It
adds first class procedures, first class lists, and “first class truly object oriented
sprites with prototyping inheritance, and nestable sprites”[60, Section Features
and derivatives].

6.3 Blueprints Visual Scripting system

The Blueprints Visual Scripting system is a part of Unreal Engine 4, the commercial
game engine. As its name implies, it is also intended for scripting. Its purpose is
to complement C++, which is the implementation language of the engine and is
used for all other purposes, such as extending it.

6.3.1 Issues

Some of the main disadvantages of the Blueprints system are[95, 97, 110, 98]:

• Blueprint scripts consume more memory and are slower than C++ programs.

• Blueprint scripts are not portable.

• The visual editor does not support automatic structuring. It is hard to man-
age complex scripts.

• There is no support for first-class or higher-order functions.

• There is no usable text representation.

• The type system is static. This is not a disadvantage in itself, but it does
negatively impact the aspects of complementing C++ (which also has a static
type system) and flexibility.

72



CHAPTER 6. COMPARISONS TO OTHER VPLS

• Basic functions are missing from the “standard library”. E.g. there is no sort-
ing function available out of the box[96]. The user has to either implement
basic functions herself, which can result in partial or broken implementations
or use external libraries[108].

• Version control is very difficult. Because blueprints are stored in binary for-
mat without a text representation, they cannot be automatically merged or
compared by standard tools. Dedicated tools exist, but are more limited,
harder to use.

Overall, as a major part of a commercial game engine, the Blueprints system
is significantly lacking. Programming in Blueprints can often feel rigid and cum-
bersome. It does a poor job at complementing C++, being similarly static and
rigid. It can be rather described as intersecting C++’s feature set, with some im-
provements, but significantly poorer performance. Basic functionality is missing
and external libraries are needed to fix that. Because of all this reasons it is not
very suitable for rapid prototyping. There is a lot of room for improvement.

6.4 In comparison to Dual
In comparison with the above languages, Dual features the following:

• It is highly usable, portable and is intended to be open-source.

• It has a highly integrated text representation interchangeable with the visual
representation. This fixes all problems related to tools that operate only on
text, such as version control or comparison and diffing tools.

• It is dynamically typed – its type system relies on JavaScript’s type system.

• It is highly expressive and extensible, having support for first-class and
higher-order functions. The designed first-class JIT macros are much more
powerful than the macro system in the Blueprints system.

• The visual representation in Dual can be fully customized with CSS. This fea-
ture can be combined with the Lisp-quality expressive power of the language
for example to better articulate the semantics of a DSL.

73



CHAPTER 6. COMPARISONS TO OTHER VPLS

74



Chapter 7

Summary and conclusions

The language and its development environment presented in this thesis is by no
means a complete design. It should be viewed as a snapshot from a design process
that I intend to continue in the future.

However the effort invested in the project was sufficient to achieve the general
goals, listed in Chapter 0. This is reflected in:

• The core language, which is Turing-complete and thus capable of implement-
ing any algorithm1. A simple Brainfuck interpreter is included as an example
program (see Appendix A) to demonstrate this[112]. Moreover, the language
is based on Lisp, inheriting a lot of its expressive power and extensibility.

• The above is also demonstrated in implementing a non-trivial application,
which is the clone of Pac-Man described in Chapter 5. This exercise also
showed significant flaws in the prototype related to performance and thus
helped set directions for future improvement.

• Design and implementation of a mechanism, which enables the direct corre-
spondence and interchangeability of the visual and text representations. In
principle any number of representations could be associated.

• Implementation of the prototype of the language’s development environment
with integrated text and visual editors. This demonstrates practically the
main ideas outlined in Chapter 3.

Visual programming systems that provide the ability to work with text and
visual representations were developed in the past[117]. But none of them seems to
have a similar degree of integration as the system presented here.

1In the same sense as JavaScript or C. No existing language is Turing-complete in the absolute
sense, because of physical hardware limitations.

75



CHAPTER 7. SUMMARY AND CONCLUSIONS

I am convinced that some of the ideas presented here are a valuable contribution
in the area of (visual) programming language design and development and can be
of use for current and and future designers in improving the existing as well as
creating new, better2 visual language systems.

I learned that programming language design is a tremendous and heroic task,
especially if the language being designed is intended to be of any real-world use.
Designing and implementing such a language absolutely from scratch, while intro-
ducing useful innovation cannot be done within the time limits of research for a
thesis, unless perhaps by an experienced language designer. But such experience
has to be gained somehow this was an excellent opportunity.

2 While doing this research for this thesis I found a VPL project named Luna, that may be
built around a similar idea of highly integrated text and visual representations. The project’s
website claims (emphasis mine): [90]:

Luna is the world’s first programming language featuring two exchangeable repre-
sentations: textual and visual, which you can freely switch at any time.

However the project is in “private alpha” stage – it is not publicly available as of July 2016.
Nonetheless this may be taken as an indication that the ideas presented in this research are a
step on a path to better future VPL systems.

76



Bibliography

Books and articles

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and In-
terpretation of Computer Programs. MIT Press, 1996. Also available online:
https://mitpress.mit.edu/sicp/.

[2] E.W. Dijkstra. Algol 60 translation: An algol 60 translator for the x1 and
making a translator for algol 60. Technical report, Stichting Mathematisch
Centrum, 1961.

[3] Marijn Haverbeke. Eloquent JavaScript. No Starch Press, 2nd edition, De-
cember 2014. Also available online: http://eloquentjavascript.net/.

[4] Doug Hoyte. Let Over Lambda. Lulu.com, 2008.

[5] Alan C. Kay. The early history of smalltalk. SIGPLAN Not.,
28(3):69–95, March 1993. Also available here: http://worrydream.com/
EarlyHistoryOfSmalltalk/.

[6] M. Douglas McIlroy. Macro instruction extensions of compiler languages.
Commun. ACM, 3(4):214–220, April 1960.

[7] Peter Seibel. Practical Common Lisp. 2005.

[8] Charles Severance. Javascript: Designing a language in 10 days. Computer,
45(2):7–8, 2012.

[9] Various Wikibooks users. F# Programming. https://en.wikibooks.
org/wiki/F_Sharp_Programming. A Wikibooks project: https://en.
wikibooks.org/wiki/Main_Page.

[10] Philip Wadler. A critique of Abelson and Sussman or why calculat-
ing is better than scheming. SIGPLAN Notices, 22(3):83–94, March
1987. Available online: https://www.cs.kent.ac.uk/people/staff/dat/
miranda/wadler87.pdf.

77

https://mitpress.mit.edu/sicp/
http://eloquentjavascript.net/
http://worrydream.com/EarlyHistoryOfSmalltalk/
http://worrydream.com/EarlyHistoryOfSmalltalk/
https://en.wikibooks.org/wiki/F_Sharp_Programming
https://en.wikibooks.org/wiki/F_Sharp_Programming
https://en.wikibooks.org/wiki/Main_Page
https://en.wikibooks.org/wiki/Main_Page
https://www.cs.kent.ac.uk/people/staff/dat/miranda/wadler87.pdf
https://www.cs.kent.ac.uk/people/staff/dat/miranda/wadler87.pdf


CHAPTER 7. SUMMARY AND CONCLUSIONS

Documentations, standards and specifications

[11] Russell Allen et al. Self Handbook for Self 4.5.0 documentation. http:
//handbook.selflanguage.org/4.5/, January 2014.

[12] Matthew Flatt and PLT. The Racket Reference. https://docs.racket-
lang.org/reference. “[D]efines the core Racket language and describes its
most prominent libraries.”.

[13] Free Software Foundation, Inc. Emacs Lisp. https://www.gnu.org/
software/emacs/manual/html_node/elisp/index.html. The latest ver-
sion of the GNU Emacs Lisp Reference Manual.

[14] David Herman, Luke Wagner, and Alon Zakai. asm.js. http://asmjs.org/
spec/latest/. The official standard for the Document Object Model.

[15] Ecma International. ECMAScript R© 2017 Language Specification. https:
//tc39.github.io/ecma262/.

[16] Ecma International. ECMAScript R© 2015 Language Specification. http:
//www.ecma-international.org/ecma-262/6.0/, June 2015.

[17] Ecma International. ECMAScript R© 2016 Language Specification. http:
//www.ecma-international.org/ecma-262/7.0/index.html, June 2016.

[18] ISO/IEC/IEEE. ISO/IEC/IEEE 60559:2011. http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57469,
July 2011. “[S]pecifies formats and methods for floating-point arithmetic in
computer systems.”.

[19] LispWorks Ltd. Common Lisp HyperSpec (TM). http://clhs.lisp.se/
Front/index.htm. “[O]nline version of the ANSI Common Lisp Standard[.]”.

[20] Alex Shinn, John Cowan, Arthur A. Gleckler, and et al. The Revised7 Re-
port on the Algorithmic Language Scheme. trac.sacrideo.us/wg/raw-
attachment/wiki/WikiStart/r7rs.pdf, July 2013. The latest version of
the de facto standard for the Scheme programming language.

[21] Web Hypertext Application Technology Working Group (WHATWG). DOM
Standard. https://dom.spec.whatwg.org/. The official standard for the
Document Object Model.

Mozilla Developer Network

The following sources are articles from Mozilla Developer Network (https://
developer.mozilla.org.):

78

http://handbook.selflanguage.org/4.5/
http://handbook.selflanguage.org/4.5/
https://docs.racket-lang.org/reference
https://docs.racket-lang.org/reference
https://www.gnu.org/software/emacs/manual/html_node/elisp/index.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/index.html
http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57469
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57469
http://clhs.lisp.se/Front/index.htm
http://clhs.lisp.se/Front/index.htm
trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf
trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf
https://dom.spec.whatwg.org/
https://developer.mozilla.org
https://developer.mozilla.org


CHAPTER 7. SUMMARY AND CONCLUSIONS

[22] Mozilla Developer Network and individual contributors. Anatomy of a video
game. https://developer.mozilla.org/en-US/docs/Games/Anatomy.

[23] Mozilla Developer Network and individual contributors. Array.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array.

[24] Mozilla Developer Network and individual contributors. Comparison op-
erators. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Comparison_Operators.

[25] Mozilla Developer Network and individual contributors. Concurrency model
and Event Loop. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/EventLoop.

[26] Mozilla Developer Network and individual contributors. Console.log().
https://developer.mozilla.org/en-US/docs/Web/API/Console/log.

[27] Mozilla Developer Network and individual contributors. CSS reference.
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference.

[28] Mozilla Developer Network and individual contributors. Destruc-
turing assignment. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Destructuring_assignment.

[29] Mozilla Developer Network and individual contributors. JavaScript data
types and data structures. https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Data_structures.

[30] Mozilla Developer Network and individual contributors. Memory Manage-
ment. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Memory_Management.

[31] Mozilla Developer Network and individual contributors. Object.assign().
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Object/assign.

[32] Mozilla Developer Network and individual contributors. Property ac-
cessors. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Property_Accessors.

[33] Mozilla Developer Network and individual contributors. Rest param-
eters. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Functions/rest_parameters.

[34] Mozilla Developer Network and individual contributors. Spread op-
erator. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Spread_operator.

79

https://developer.mozilla.org/en-US/docs/Games/Anatomy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator


CHAPTER 7. SUMMARY AND CONCLUSIONS

[35] Mozilla Developer Network and individual contributors. Template lit-
erals. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Template_literals.

[36] Mozilla Developer Network and individual contributors. typeof.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/typeof.

[37] Mozilla Developer Network and individual contributors. undefined.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/undefined.

[38] Mozilla Developer Network and individual contributors. var.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Statements/var.

[39] Mozilla Developer Network and individual contributors. WebSockets. https:
//developer.mozilla.org/en-US/docs/WebSockets.

[40] Mozilla Developer Network and individual contributors. Window. https:
//developer.mozilla.org/en-US/docs/Web/API/Window.

[41] Mozilla Developer Network and individual contributors. Win-
dow.localStorage. https://developer.mozilla.org/en-US/docs/Web/
API/Window/localStorage.

[42] Mozilla Developer Network and individual contributors. win-
dow.requestAnimationFrame(). https://developer.mozilla.org/en-
US/docs/Web/API/Window/requestAnimationFrame.

Wikis

[43] Scratch Wiki. Scratch. https://wiki.scratch.mit.edu/wiki/Scratch.
Description of the language from the Scratch Wiki. See also the language’s
homepage: https://scratch.mit.edu/.

[44] Scratch Wiki. Scratch 2.0 Offline Editor. https://wiki.scratch.mit.
edu/wiki/Scratch_2.0_Offline_Editor. From the Scratch Wiki: https:
//wiki.scratch.mit.edu/wiki/.

[45] Scratch Wiki. Script. https://wiki.scratch.mit.edu/wiki/Script.
From the Scratch Wiki: https://wiki.scratch.mit.edu/wiki/.

[46] W3C Wiki. Open Web Platform. https://www.w3.org/wiki/Open_Web_
Platform. “The Open Web Platform is the collection of open (royalty-free)
technologies which enables the Web.”.

80

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/WebSockets
https://developer.mozilla.org/en-US/docs/WebSockets
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestAnimationFrame
https://wiki.scratch.mit.edu/wiki/Scratch
https://scratch.mit.edu/
https://wiki.scratch.mit.edu/wiki/Scratch_2.0_Offline_Editor
https://wiki.scratch.mit.edu/wiki/Scratch_2.0_Offline_Editor
https://wiki.scratch.mit.edu/wiki/
https://wiki.scratch.mit.edu/wiki/
https://wiki.scratch.mit.edu/wiki/Script
https://wiki.scratch.mit.edu/wiki/
https://www.w3.org/wiki/Open_Web_Platform
https://www.w3.org/wiki/Open_Web_Platform


CHAPTER 7. SUMMARY AND CONCLUSIONS

[47] Wikipedia, the free encyclopedia. Comparison of JavaScript-based
source code editors. https://en.wikipedia.org/wiki/Comparison_of_
JavaScript-based_source_code_editors. Wikipedia comparison article.

[48] Wikipedia, the free encyclopedia. Computer programming in the punched
card era. https://en.wikipedia.org/wiki/Computer_programming_in_
the_punched_card_era. Wikipedia article about programming in the
punched card era.

[49] Wikipedia, the free encyclopedia. Deutsch limit. https://en.wikipedia.
org/wiki/Deutsch_limit. A Wikipedia article.

[50] Wikipedia, the free encyclopedia. Document Object Model. https://en.
wikipedia.org/wiki/Document_Object_Model. A Wikipedia article.

[51] Wikipedia, the free encyclopedia. Homoiconicity. https://en.wikipedia.
org/wiki/Homoiconicity. Wikipedia definition of homoiconicity.

[52] Wikipedia, the free encyclopedia. JSDoc. https://en.wikipedia.org/
wiki/JSDoc. Wikipedia definition of JSDoc.

[53] Wikipedia, the free encyclopedia. LabVIEW. https://en.wikipedia.org/
wiki/LabVIEW. A Wikipedia article.

[54] Wikipedia, the free encyclopedia. Lego Mindstorms. https://en.
wikipedia.org/wiki/Lego_Mindstorms. Wikipedia article about Lego
Mindstorms.

[55] Wikipedia, the free encyclopedia. Lisp (programming language). https://
en.wikipedia.org/wiki/Lisp_(programming_language). Wikipedia defi-
nition of Lisp.

[56] Wikipedia, the free encyclopedia. List of C-family program-
ming languages. https://en.wikipedia.org/wiki/List_of_C-
family_programming_languages. A list from Wikipedia.

[57] Wikipedia, the free encyclopedia. List of Unreal Engine games. https://en.
wikipedia.org/wiki/List_of_Unreal_Engine_games. “[A] list of notable
games using a version of the Unreal Engine.” From Wikipedia.

[58] Wikipedia, the free encyclopedia. Logo (programming language). https://
en.wikipedia.org/wiki/Logo_(programming_language). Wikipedia arti-
cle about the Logo programming language.

[59] Wikipedia, the free encyclopedia. Pattern matching. https://en.
wikipedia.org/wiki/Pattern_matching. Wikipedia definition of pattern
matching.

81

https://en.wikipedia.org/wiki/Comparison_of_JavaScript-based_source_code_editors
https://en.wikipedia.org/wiki/Comparison_of_JavaScript-based_source_code_editors
https://en.wikipedia.org/wiki/Computer_programming_in_the_punched_card_era
https://en.wikipedia.org/wiki/Computer_programming_in_the_punched_card_era
https://en.wikipedia.org/wiki/Deutsch_limit
https://en.wikipedia.org/wiki/Deutsch_limit
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Homoiconicity
https://en.wikipedia.org/wiki/Homoiconicity
https://en.wikipedia.org/wiki/JSDoc
https://en.wikipedia.org/wiki/JSDoc
https://en.wikipedia.org/wiki/LabVIEW
https://en.wikipedia.org/wiki/LabVIEW
https://en.wikipedia.org/wiki/Lego_Mindstorms
https://en.wikipedia.org/wiki/Lego_Mindstorms
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/List_of_C-family_programming_languages
https://en.wikipedia.org/wiki/List_of_C-family_programming_languages
https://en.wikipedia.org/wiki/List_of_Unreal_Engine_games
https://en.wikipedia.org/wiki/List_of_Unreal_Engine_games
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Pattern_matching
https://en.wikipedia.org/wiki/Pattern_matching


CHAPTER 7. SUMMARY AND CONCLUSIONS

[60] Wikipedia, the free encyclopedia. Scratch (programming language).
https://en.wikipedia.org/wiki/Scratch_(programming_language).
Wikipedia definition of Scratch.

[61] Wikipedia, the free encyclopedia. Scripting language. https://en.
wikipedia.org/wiki/Scripting_language. A Wikipedia article.

[62] Wikipedia, the free encyclopedia. Single-page application. https://en.
wikipedia.org/wiki/Single-page_application. Wikipedia definition of
Single-page application.

[63] Wikipedia, the free encyclopedia. Standard ML. https://en.wikipedia.
org/wiki/Standard_ML. Wikipedia definition of Standard ML.

[64] Wikipedia, the free encyclopedia. String interpolation. https://en.
wikipedia.org/wiki/String_interpolation. Wikipedia definition of
string interpolation.

[65] Wikipedia, the free encyclopedia. Unparser. https://en.wikipedia.org/
wiki/Unparser. Wikipedia definition of an unparser.

[66] Wikipedia, the free encyclopedia. Variadic function. https://en.
wikipedia.org/wiki/Variadic_function. Wikipedia definition of a vari-
adic function.

[67] Wikipedia, the free encyclopedia. Visual programming language. https://
en.wikipedia.org/wiki/Visual_programming_language. Wikipedia defi-
nition of a visual programming language.

[68] WikiWikiWeb. Definition Of Homoiconic. http://c2.com/cgi/wiki?
DefinitionOfHomoiconic. An entry from WikiWikiWeb http://c2.com/
cgi/wiki/FrontPage.

[69] WikiWikiWeb. Eval Apply. http://c2.com/cgi/wiki?EvalApply. An en-
try from WikiWikiWeb http://c2.com/cgi/wiki/FrontPage.

[70] WikiWikiWeb. Lisp Is Too Powerful. http://c2.com/cgi/wiki?
LispIsTooPowerful. An entry from WikiWikiWeb: http://c2.com/cgi/
wiki.

[71] WikiWikiWeb. Lisp Macro. http://c2.com/cgi/wiki?LispMacro. An en-
try from WikiWikiWeb http://c2.com/cgi/wiki/FrontPage.

[72] WikiWikiWeb. Lost Ina Seaof Parentheses. http://c2.com/cgi/wiki?
LostInaSeaofParentheses. An entry from WikiWikiWeb http://c2.com/
cgi/wiki/FrontPage.

[73] WikiWikiWeb. Scripting Language. http://c2.com/cgi/wiki?
ScriptingLanguage. An entry from WikiWikiWeb http://c2.com/cgi/
wiki/FrontPage.

82

https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Standard_ML
https://en.wikipedia.org/wiki/Standard_ML
https://en.wikipedia.org/wiki/String_interpolation
https://en.wikipedia.org/wiki/String_interpolation
https://en.wikipedia.org/wiki/Unparser
https://en.wikipedia.org/wiki/Unparser
https://en.wikipedia.org/wiki/Variadic_function
https://en.wikipedia.org/wiki/Variadic_function
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/Visual_programming_language
http://c2.com/cgi/wiki?DefinitionOfHomoiconic
http://c2.com/cgi/wiki?DefinitionOfHomoiconic
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki?EvalApply
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki?LispIsTooPowerful
http://c2.com/cgi/wiki?LispIsTooPowerful
http://c2.com/cgi/wiki
http://c2.com/cgi/wiki
http://c2.com/cgi/wiki?LispMacro
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki?LostInaSeaofParentheses
http://c2.com/cgi/wiki?LostInaSeaofParentheses
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki?ScriptingLanguage
http://c2.com/cgi/wiki?ScriptingLanguage
http://c2.com/cgi/wiki/FrontPage
http://c2.com/cgi/wiki/FrontPage


CHAPTER 7. SUMMARY AND CONCLUSIONS

Homepages
[74] Adobe and Brackets’ community. Brackets - A modern, open source code

editor that understands web design. http://brackets.io/. Brackets web-
site.

[75] Edwin Brady and Idris’ community. Idris | A Language with Dependent
Types. http://www.idris-lang.org/. Homepage of the Idris programming
language.

[76] Cloud9 IDE, Inc. Cloud9 - Your development environment, in the cloud.
https://c9.io/. Cloud9 webpage.

[77] Codeanywhere, Inc. Codeanywhere · Cross Platform Cloud IDE. https:
//codeanywhere.com/. Codeanywhere webpage.

[78] Node.js Foundation. Node.js. https://nodejs.org. Node.js website.
“Node.js R© is a JavaScript runtime built on Chrome’s V8 JavaScript engine.”.

[79] Simon Fowler, Sam Lindley, Garrett Morris, Philip Wadler, et al. Links:
Linking Theory to Practice for the Web. http://groups.inf.ed.ac.uk/
links/. Links programming language website.

[80] GitHub. Atom. https://atom.io/. Atom website. Atom is “[a] hackable
text editor for the 21st Century”.

[81] Paul Graham and Robert Morris. Arc Forum | Arc. http://arclanguage.
org/. Arc programming language website.

[82] Marijn Haverbeke and CodeMirror’s community. CodeMirror. http://
codemirror.net/. CodeMirror website. “CodeMirror is a versatile text edi-
tor implemented in JavaScript for the browser.”.

[83] Facebook Inc. Flow | A static type checker for JavaScript. https:
//flowtype.org/. Flow webpage.

[84] Ecma International. TC39 - ECMAScript. http://www.ecma-
international.org/memento/TC39.htm. Technical Committee 39 webpage
at Ecma International.

[85] Ecma International. Welcome to Ecma International. http://www.ecma-
international.org/. Ecma International webpage.

[86] Ecma International and Technical Committee 39. tc39/ecma262: Status, pro-
cess, and documents for ECMA262. https://github.com/tc39/ecma262.
Official ECMAScript’s GitHub repository.

[87] Microsoft. TypeScript - JavaScript that scales. https://www.
typescriptlang.org/. TypeScript webpage.

83

http://brackets.io/
http://www.idris-lang.org/
https://c9.io/
https://codeanywhere.com/
https://codeanywhere.com/
https://nodejs.org
http://groups.inf.ed.ac.uk/links/
http://groups.inf.ed.ac.uk/links/
https://atom.io/
http://arclanguage.org/
http://arclanguage.org/
http://codemirror.net/
http://codemirror.net/
https://flowtype.org/
https://flowtype.org/
http://www.ecma-international.org/memento/TC39.htm
http://www.ecma-international.org/memento/TC39.htm
http://www.ecma-international.org/
http://www.ecma-international.org/
https://github.com/tc39/ecma262
https://www.typescriptlang.org/
https://www.typescriptlang.org/


CHAPTER 7. SUMMARY AND CONCLUSIONS

[88] Microsoft. Visual Studio Code - Code Editing. Redefined. https://code.
visualstudio.com/. Visual Studio Code website.

[89] Mojang. minecraft.net - Home. https://minecraft.net. Minecraft website.

[90] New Byte Order. Luna. Visual and textual functional programming lan-
guage. http://www.luna-lang.org/. Luna programming language website.

[91] PLT et al. The Racket Language. https://racket-lang.org/. Racket
programming language website. For detailed authorship information see
https://racket-lang.org/people.html.

[92] The LEGO Group. Home - LEGO R©MINDSTORMS R© - LEGO.com - Mind-
storms LEGO.com. http://mindstorms.lego.com. LEGO Mindstorms
website.

[93] Various. About - Steel Bank Common Lisp. http://www.sbcl.org/. Steel
Bank Common Lisp programming language website. For detailed copyright
information see http://www.sbcl.org/history.html.

Other

[94] Scott W. Ambler. Software Modeling on Plain Old Whiteboards (POWs).
http://agilemodeling.com/essays/whiteboardModeling.htm. From Ag-
ile Modeling website: http://agilemodeling.com/.

[95] Various authors. Disadvantage of Blueprint Scripting over C++? https:
//forums.unrealengine.com/showthread.php?47637-Disadvantage-
of-Blueprint-Scripting-over-C. A discussion from Unreal Engine 4
forums: https://forums.unrealengine.com/.

[96] Various authors. How can I sort items in array by prop-
erties? https://answers.unrealengine.com/questions/32489/sort-
items-in-array-with-blueprints.html. A question at UE4 Answerhub:
https://answers.unrealengine.com.

[97] Various authors. UE4 disadvantages? https://forums.unrealengine.com/
showthread.php?64564-UE4-disadvantages. A discussion from Unreal En-
gine 4 forums: https://forums.unrealengine.com/.

[98] Various authors. Unreal Blueprints Visual Scripting. http://lambda-the-
ultimate.org/node/4918. An article and discussion at Lambda the Ulti-
mate: http://lambda-the-ultimate.org/.

[99] Various authors. Why isn’t there a general purpose visual programming lan-
guage? https://news.ycombinator.com/item?id=1496165. A discussion
on Hacker News: https://news.ycombinator.com/.

84

https://code.visualstudio.com/
https://code.visualstudio.com/
https://minecraft.net
http://www.luna-lang.org/
https://racket-lang.org/
https://racket-lang.org/people.html
http://mindstorms.lego.com
http://www.sbcl.org/
http://www.sbcl.org/history.html
http://agilemodeling.com/essays/whiteboardModeling.htm
http://agilemodeling.com/
https://forums.unrealengine.com/showthread.php?47637-Disadvantage-of-Blueprint-Scripting-over-C
https://forums.unrealengine.com/showthread.php?47637-Disadvantage-of-Blueprint-Scripting-over-C
https://forums.unrealengine.com/showthread.php?47637-Disadvantage-of-Blueprint-Scripting-over-C
https://forums.unrealengine.com/
https://answers.unrealengine.com/questions/32489/sort-items-in-array-with-blueprints.html
https://answers.unrealengine.com/questions/32489/sort-items-in-array-with-blueprints.html
https://answers.unrealengine.com
https://forums.unrealengine.com/showthread.php?64564-UE4-disadvantages
https://forums.unrealengine.com/showthread.php?64564-UE4-disadvantages
https://forums.unrealengine.com/
http://lambda-the-ultimate.org/node/4918
http://lambda-the-ultimate.org/node/4918
http://lambda-the-ultimate.org/
https://news.ycombinator.com/item?id=1496165
https://news.ycombinator.com/


CHAPTER 7. SUMMARY AND CONCLUSIONS

[100] Donnie Berkholz. Programming languages ranked by expressiveness.
http://redmonk.com/dberkholz/2013/03/25/programming-languages-
ranked-by-expressiveness/, March 2013. A blog post by a RedMonk (A
“developer focused industry analyst firm.”) analyst.

[101] Craig Bicknell and Chris Oakes. Mozilla Stomps Ahead Un-
der AOL. https://web.archive.org/web/20140603235609/http:
//archive.wired.com/techbiz/media/news/1998/11/16466, November
1998. An archived Wired (http://www.wired.com/) blog post.

[102] Daniel Bower. Visual Programming vs Text Programming. https://
bowerstudios.com/node/742. An article from author’s personal website:
https://bowerstudios.com/.

[103] S. D. Bragg and C. G. Driskill. Diagrammatic-graphical programming lan-
guages and dod-std-2167a. In AUTOTESTCON ’94. IEEE Systems Readi-
ness Technology Conference. ’Cost Effective Support Into the Next Century’,
Conference Proceedings., pages 211–220, Sep 1994.

[104] Jim Bumgardner. The Origins of Mindstorms. http://wayback.
archive.org/web/20131221044013/http://www.wired.com/geekdad/
2007/03/the_origins_of_/, March 2007. An archived Wired
(http://www.wired.com/) blog post.

[105] Margaret M. Burnett. Visual Language Research Bibliography. http://web.
engr.oregonstate.edu/~burnett/vpl.html. “This page is a structured
bibliography of papers pertaining to visual language (VL) research.”. From
Oregon State University.

[106] Micah Catlin. Browser Garbage Collection and Frame Rate.
http://blog.artillery.com/2012/10/browser-garbage-collection-
and-framerate.html. A post from The Artillery Blog: http:
//blog.artillery.com/.

[107] Rémi Dehouck. The maturity of visual programming. http://www.craft.
ai/blog/the-maturity-of-visual-programming/, September 2015. A
blog post.

[108] Low Entry. LE Extended Standard Library by Low Entry in Code Plugins
- UE4 Marketplace. https://www.unrealengine.com/marketplace/low-
entry-extended-standard-library. A library available at UE4 Market-
place: https://www.unrealengine.com/marketplace.

[109] Epic Games, Inc. Blueprint Editor Reference. https://docs.
unrealengine.com/latest/INT/Engine/Blueprints/Editor/. From Un-
real Engine 4 Documentation.

85

http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
https://web.archive.org/web/20140603235609/http://archive.wired.com/techbiz/media/news/1998/11/16466
https://web.archive.org/web/20140603235609/http://archive.wired.com/techbiz/media/news/1998/11/16466
http://www.wired.com/
https://bowerstudios.com/node/742
https://bowerstudios.com/node/742
https://bowerstudios.com/
http://wayback.archive.org/web/20131221044013/http://www.wired.com/geekdad/2007/03/the_origins_of_/
http://wayback.archive.org/web/20131221044013/http://www.wired.com/geekdad/2007/03/the_origins_of_/
http://wayback.archive.org/web/20131221044013/http://www.wired.com/geekdad/2007/03/the_origins_of_/
http://www.wired.com/
http://web.engr.oregonstate.edu/~burnett/vpl.html
http://web.engr.oregonstate.edu/~burnett/vpl.html
http://blog.artillery.com/2012/10/browser-garbage-collection-and-framerate.html
http://blog.artillery.com/2012/10/browser-garbage-collection-and-framerate.html
http://blog.artillery.com/
http://blog.artillery.com/
http://www.craft.ai/blog/the-maturity-of-visual-programming/
http://www.craft.ai/blog/the-maturity-of-visual-programming/
https://www.unrealengine.com/marketplace/low-entry-extended-standard-library
https://www.unrealengine.com/marketplace/low-entry-extended-standard-library
https://www.unrealengine.com/marketplace
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/Editor/
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/Editor/


CHAPTER 7. SUMMARY AND CONCLUSIONS

[110] Epic Games, Inc. Blueprints Visual Scripting. https://docs.
unrealengine.com/latest/INT/Engine/Blueprints/. From Unreal En-
gine 4 Documentation.

[111] Martin Exner. Visual Programming Language – Infograph and Introduction
| Constructing Kids. https://constructingkids.com/2013/05/15/vpl/.
From the author’s personal blog: https://constructingkids.com/.

[112] Frans Faase. BF is Turing-complete. http://www.iwriteiam.nl/Ha_bf_
Turing.html. An article from author’s personal website.

[113] Logo Foundation. Logo History. http://el.media.mit.edu/logo-
foundation/what_is_logo/history.html. From Logo Foundation website:
http://el.media.mit.edu/logo-foundation/.

[114] Frank da Cruz. IBM Punch Cards. http://www.columbia.edu/cu/
computinghistory/cards.html. From Columbia University Computing
History: http://www.columbia.edu/cu/computinghistory/index.html.

[115] Jacques Guyot. BNF rules of LISP. http://cui.unige.ch/db-research/
Enseignement/analyseinfo/LISP/BNFlisp.html. A BNF formulation of
Lisp syntax.

[116] Jim Hamerly, Tom Paquin, and Susan Walton. The Story of Mozilla. http:
//www.oreilly.com/openbook/opensources/book/netrev.html, January
1999. From “Open Sources: Voices from the Open Source Revolution”.

[117] Eric Hosick. Visual Programming Languages - Snapshots. http:
//blog.interfacevision.com/design/design-visual-progarmming-
languages-snapshots/, 2014.

[118] Nicholas H.Tollervey. Lisp Concise and Simple. http://ntoll.org/
article/lisp-concise-and-simple, March 2013. An article from the au-
thor’s personal website: http://ntoll.org/.

[119] MIT Media Laboratory. Cricket Logo for GoGo board. http://learning.
media.mit.edu/projects/gogo/gogo22/cricket_logo.html.

[120] George Leontiev. https://twitter.com/folone/status/
494017847585415168. A twitter message with a quote from Edwin
Brady.

[121] Barry Margolin. Re: Lisp BNF available? http://www.cs.cmu.edu/Groups/
/AI/util/lang/lisp/doc/notes/lisp_bnf.txt. An archived message
from comp.lang.lisp discussion group.

[122] John McCarthy. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. http://www-formal.stanford.edu/jmc/
recursive/recursive.html. A paper.

86

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/
https://constructingkids.com/2013/05/15/vpl/
https://constructingkids.com/
http://www.iwriteiam.nl/Ha_bf_Turing.html
http://www.iwriteiam.nl/Ha_bf_Turing.html
http://el.media.mit.edu/logo-foundation/what_is_logo/history.html
http://el.media.mit.edu/logo-foundation/what_is_logo/history.html
http://el.media.mit.edu/logo-foundation/
http://www.columbia.edu/cu/computinghistory/cards.html
http://www.columbia.edu/cu/computinghistory/cards.html
http://www.columbia.edu/cu/computinghistory/index.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/LISP/BNFlisp.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/LISP/BNFlisp.html
http://www.oreilly.com/openbook/opensources/book/netrev.html
http://www.oreilly.com/openbook/opensources/book/netrev.html
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://ntoll.org/article/lisp-concise-and-simple
http://ntoll.org/article/lisp-concise-and-simple
http://ntoll.org/
http://learning.media.mit.edu/projects/gogo/gogo22/cricket_logo.html
http://learning.media.mit.edu/projects/gogo/gogo22/cricket_logo.html
https://twitter.com/folone/status/494017847585415168
https://twitter.com/folone/status/494017847585415168
http://www.cs.cmu.edu/Groups//AI/util/lang/lisp/doc/notes/lisp_bnf.txt
http://www.cs.cmu.edu/Groups//AI/util/lang/lisp/doc/notes/lisp_bnf.txt
http://www-formal.stanford.edu/jmc/recursive/recursive.html
http://www-formal.stanford.edu/jmc/recursive/recursive.html


CHAPTER 7. SUMMARY AND CONCLUSIONS

[123] John McCarthy. History of Lisp. http://www-formal.stanford.edu/jmc/
history/lisp/lisp.html, February 1979. A draft.

[124] Matt Might. First-class (run-time) macros and meta-circular evalu-
ation. http://matt.might.net/articles/metacircular-evaluation-
and-first-class-run-time-macros/.

[125] Rich Morin and Vicki Brown. Scripting Languages. http://www.mactech.
com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.
html. An article from MacTech Magazine: http://www.mactech.com.

[126] Christian Nutt. Epic’s Tim Sweeney lays out the case for Unreal Engine
4. http://www.gamasutra.com/view/news/213647/Epics_Tim_Sweeney_
lays_out_the_case_for_Unreal_Engine_4.php, March 2014. An article
from the Gamasutra website.

[127] Object Management Group R©, Inc. What is UML | Unified Modeling Lan-
guage. http://www.uml.org/what-is-uml.htm. From UML’s website:
http://www.uml.org.

[128] Bill Orcutt. billorcutt/lily: Lily was a browser-based, visual programming
environment written in JavaScript. the project is inactive. https://github.
com/billorcutt/lily. A GitHub repository.

[129] Python Software Foundation. The Python Tutorial. https://docs.python.
org/3/tutorial/. From Python 3 official documentation: https://docs.
python.org/3/index.html.

[130] Axel Rauschmayer. How numbers are encoded in JavaScript. http:
//www.2ality.com/2012/04/number-encoding.html. An article from au-
thor’s personal blog http://www.2ality.com.

[131] Guinness World Records. Most successful videogame engine.
http://www.guinnessworldrecords.com/world-records/most-
successful-game-engine. From Guinness World Records webpage.
Record as of 16 July 2014.

[132] Refsnes Data. JavaScript HTML DOM. http://www.w3schools.com/js/
js_htmldom.asp. From w3schools website: http://www.w3schools.com/.

[133] Tiago Simões. Visual Programming Is Unbelievable. . . Here’s Why We
Don’t Believe In It. http://www.outsystems.com/blog/2015/03/visual-
programming-is-unbelievable.html. An article from OutSystems blog:
https://www.outsystems.com/blog/.

[134] Gerhard Sprung. history of visual programming languages v0.1.
https://gsprung.wordpress.com/2010/07/21/history-of-visual-
programming-languages-v0-1/, July 2010. From the author’s personal
blog: https://gsprung.wordpress.com/.

87

http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
http://matt.might.net/articles/metacircular-evaluation-and-first-class-run-time-macros/
http://matt.might.net/articles/metacircular-evaluation-and-first-class-run-time-macros/
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.mactech.com
http://www.gamasutra.com/view/news/213647/Epics_Tim_Sweeney_lays_out_the_case_for_Unreal_Engine_4.php
http://www.gamasutra.com/view/news/213647/Epics_Tim_Sweeney_lays_out_the_case_for_Unreal_Engine_4.php
http://www.uml.org/what-is-uml.htm
http://www.uml.org
https://github.com/billorcutt/lily
https://github.com/billorcutt/lily
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/index.html
https://docs.python.org/3/index.html
http://www.2ality.com/2012/04/number-encoding.html
http://www.2ality.com/2012/04/number-encoding.html
http://www.2ality.com
http://www.guinnessworldrecords.com/world-records/most-successful-game-engine
http://www.guinnessworldrecords.com/world-records/most-successful-game-engine
http://www.w3schools.com/js/js_htmldom.asp
http://www.w3schools.com/js/js_htmldom.asp
http://www.w3schools.com/
http://www.outsystems.com/blog/2015/03/visual-programming-is-unbelievable.html
http://www.outsystems.com/blog/2015/03/visual-programming-is-unbelievable.html
https://www.outsystems.com/blog/
https://gsprung.wordpress.com/2010/07/21/history-of-visual-programming-languages-v0-1/
https://gsprung.wordpress.com/2010/07/21/history-of-visual-programming-languages-v0-1/
https://gsprung.wordpress.com/


CHAPTER 7. SUMMARY AND CONCLUSIONS

[135] The Type Theory Podcast. Episode 2: Edwin Brady on Idris | The Type
Theory podcast. http://typetheorypodcast.com/2014/09/episode-2-
edwin-brady-on-idris/.

[136] Alfred Thompson. Visual Programming Languages. https://blogs.
msdn.microsoft.com/alfredth/2010/07/07/visual-programming-
languages/. An article from author’s personal blog at MSDN:
https://blogs.msdn.microsoft.com/alfredth/.

[137] Various. What are the advantages and disadvantages of visual program-
ming languages compared to regular programming languages? https:
//www.quora.com/What-are-the-advantages-and-disadvantages-of-
visual-programming-languages-compared-to-regular-programming-
languages. An question at Quora https://www.quora.com.

[138] W3C R© (MIT, ERCIM, Keio). Document Object Model (DOM). https:
//www.w3.org/DOM/. From World Wide Web Consortium website: https:
//www.w3.org/.

[139] WAI. Why UX Designers Should Use Idioms Rather Than Metaphors.
https://medium.com/@weareignition/why-ux-designers-should-use-
idioms-rather-than-metaphors-f0e4718f4960.

[140] Larry Wall. Programming is Hard, Let’s Go Scripting... http://www.perl.
com/pub/2007/12/06/soto-11.html. An article from Perl.com: http://
www.perl.com/.

[141] WHATWG. The Web platform: Browser technologies. https://platform.
html5.org/. A list of browser technologies that are the components of the
platform with links to their specifications.

[142] Wolfram. Working with String Patterns. https://reference.wolfram.
com/language/tutorial/WorkingWithStringPatterns.html. An article
from Wolfram Language Documentation http://reference.wolfram.com/
language/.

Rankings, benchmarks and statistics

[143] Pierre Carbonnelle. PYPL PopularitY of Programming Language index.
http://pypl.github.io/PYPL.html. A ranking of programming languages
by popularity. “[C]reated by analyzing how often language tutorials are
searched on Google.”.

[144] Andrie de Vries. The most popular programming languages on Stack-
Overflow | R-bloggers. http://www.r-bloggers.com/the-most-popular-
programming-languages-on-stackoverflow/, July 2015. An R-bloggers

88

http://typetheorypodcast.com/2014/09/episode-2-edwin-brady-on-idris/
http://typetheorypodcast.com/2014/09/episode-2-edwin-brady-on-idris/
https://blogs.msdn.microsoft.com/alfredth/2010/07/07/visual-programming-languages/
https://blogs.msdn.microsoft.com/alfredth/2010/07/07/visual-programming-languages/
https://blogs.msdn.microsoft.com/alfredth/2010/07/07/visual-programming-languages/
https://blogs.msdn.microsoft.com/alfredth/
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages
https://www.quora.com
https://www.w3.org/DOM/
https://www.w3.org/DOM/
https://www.w3.org/
https://www.w3.org/
https://medium.com/@weareignition/why-ux-designers-should-use-idioms-rather-than-metaphors-f0e4718f4960
https://medium.com/@weareignition/why-ux-designers-should-use-idioms-rather-than-metaphors-f0e4718f4960
http://www.perl.com/pub/2007/12/06/soto-11.html
http://www.perl.com/pub/2007/12/06/soto-11.html
http://www.perl.com/
http://www.perl.com/
https://platform.html5.org/
https://platform.html5.org/
https://reference.wolfram.com/language/tutorial/WorkingWithStringPatterns.html
https://reference.wolfram.com/language/tutorial/WorkingWithStringPatterns.html
http://reference.wolfram.com/language/
http://reference.wolfram.com/language/
http://pypl.github.io/PYPL.html
http://www.r-bloggers.com/the-most-popular-programming-languages-on-stackoverflow/
http://www.r-bloggers.com/the-most-popular-programming-languages-on-stackoverflow/


CHAPTER 7. SUMMARY AND CONCLUSIONS

(http://www.r-bloggers.com/) blog post which includes charts illustrat-
ing JavaScript’s popularity on StackOverflow between 2008 and 2015.

[145] Miniwatts Marketing Group. World Internet Users Statistics and 2015 World
Population Stats. http://www.internetworldstats.com/stats.htm.

[146] Stephen O’Grady. The RedMonk Programming Language Rankings: Jan-
uary 2016 – tecosystems. http://redmonk.com/sogrady/2016/02/19/
language-rankings-1-16/. A ranking of programming languages by
popularity. “[C]correlates language discussion (Stack Overflow) and usage
(GitHub)[.]”.

[147] Stack Overflow. Stack Overflow Developer Survey 2016 Results. http://
stackoverflow.com/research/developer-survey-2016. Stack Overflow’s
annual developer survey. “[T]he most comprehensive developer survey ever
conducted.”.

[148] Martin Rinehart. The Briefest Genealogy of Programming Languages.
http://www.martinrinehart.com/pages/genealogy-programming-
languages.html.

[149] TIOBE software BV. TIOBE Index | Tiobe - The Software Quality Com-
pany. http://www.tiobe.com/tiobe_index. A ranking of programming
languages by popularity. Based on “the number of search engine results for
queries containing the name of the language” (https://en.wikipedia.org/
wiki/TIOBE_index).

Figure sources

[150] Anonymous. http://mypad.northampton.ac.uk/12406702/files/2013/
05/Screen-Shot-2013-05-02-at-23.19.19-1s0qp26.png. A screenshot
from the MIT Scratch environment. From https://mypad.northampton.
ac.uk/12406702/2013/01/17/computer-programming-scratch/.

[151] Unreal Engine 4 Documentation. https://docs.unrealengine.
com/latest/images/Engine/Blueprints/BP_HowTo/PlacingNodes/
RightClick1.jpg. A screenshot from Blueprints Visual Scripting sys-
tem from Unreal Engine 4’s official documentation: https://docs.
unrealengine.com/latest/INT/Engine/Blueprints/index.html.

[152] Unreal Engine 4 Documentation. https://docs.unrealengine.com/
latest/images/Engine/Blueprints/HowTo/BPHT_6/GetScore.jpg. A
screenshot from Blueprints Visual Scripting system from Unreal Engine
4’s official documentation: https://docs.unrealengine.com/latest/INT/
Engine/Blueprints/index.html.

89

http://www.r-bloggers.com/
http://www.internetworldstats.com/stats.htm
http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/
http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
http://www.martinrinehart.com/pages/genealogy-programming-languages.html
http://www.martinrinehart.com/pages/genealogy-programming-languages.html
http://www.tiobe.com/tiobe_index
https://en.wikipedia.org/wiki/TIOBE_index
https://en.wikipedia.org/wiki/TIOBE_index
http://mypad.northampton.ac.uk/12406702/files/2013/05/Screen-Shot-2013-05-02-at-23.19.19-1s0qp26.png
http://mypad.northampton.ac.uk/12406702/files/2013/05/Screen-Shot-2013-05-02-at-23.19.19-1s0qp26.png
https://mypad.northampton.ac.uk/12406702/2013/01/17/computer-programming-scratch/
https://mypad.northampton.ac.uk/12406702/2013/01/17/computer-programming-scratch/
https://docs.unrealengine.com/latest/images/Engine/Blueprints/BP_HowTo/PlacingNodes/RightClick1.jpg
https://docs.unrealengine.com/latest/images/Engine/Blueprints/BP_HowTo/PlacingNodes/RightClick1.jpg
https://docs.unrealengine.com/latest/images/Engine/Blueprints/BP_HowTo/PlacingNodes/RightClick1.jpg
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://docs.unrealengine.com/latest/images/Engine/Blueprints/HowTo/BPHT_6/GetScore.jpg
https://docs.unrealengine.com/latest/images/Engine/Blueprints/HowTo/BPHT_6/GetScore.jpg
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html


CHAPTER 7. SUMMARY AND CONCLUSIONS

[153] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_piet_01.gif. A screenshot from Inter-
face Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[154] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_lily_01.png. A screenshot from Inter-
face Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[155] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_minecraft_01.png. A screenshot from
Interface Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[156] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_webdesigner_01.png. A screenshot from
Interface Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[157] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_appmaker_01.png. A screenshot from In-
terface Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[158] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_stroycode_01.png. A screenshot from
Interface Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[159] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_lava_01.png. A screenshot from Inter-
face Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/design/design-visual-
progarmming-languages-snapshots/. Individual sources are linked there.

[160] Eric Hosick. http://blog.interfacevision.com/assets/img/posts/
example_visual_language_lamdu_01.png. A screenshot from Inter-
face Vision’s blog post “Visual Programming Languages - Snap-
shots”: http://blog.interfacevision.com/assets/img/posts/example_
visual_language_lamdu_01.png.

90

http://blog.interfacevision.com/assets/img/posts/example_visual_language_piet_01.gif
http://blog.interfacevision.com/assets/img/posts/example_visual_language_piet_01.gif
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lily_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lily_01.png
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_minecraft_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_minecraft_01.png
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_webdesigner_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_webdesigner_01.png
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_appmaker_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_appmaker_01.png
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_stroycode_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_stroycode_01.png
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lava_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lava_01.png
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/design/design-visual-progarmming-languages-snapshots/
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lamdu_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lamdu_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lamdu_01.png
http://blog.interfacevision.com/assets/img/posts/example_visual_language_lamdu_01.png


CHAPTER 7. SUMMARY AND CONCLUSIONS

[161] Tycho Luyben. http://d2o7bfz2il9cb7.cloudfront.net/main-
qimg-a2e1e13841b01982fcb2ddcda2f958e9. From a Quora an-
swer: https://www.quora.com/What-are-the-advantages-and-
disadvantages-of-visual-programming-languages-compared-to-
regular-programming-languages/answer/Tycho-Luyben.

91

http://d2o7bfz2il9cb7.cloudfront.net/main-qimg-a2e1e13841b01982fcb2ddcda2f958e9
http://d2o7bfz2il9cb7.cloudfront.net/main-qimg-a2e1e13841b01982fcb2ddcda2f958e9
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages/answer/Tycho-Luyben
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages/answer/Tycho-Luyben
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-visual-programming-languages-compared-to-regular-programming-languages/answer/Tycho-Luyben


CHAPTER 7. SUMMARY AND CONCLUSIONS

92



Acronyms

API Application Programming Interface. 54

AST Abstract Syntax Tree. 10, 31, 32

BNF Backus–Naur Form. 22

DOM Document Object Model. 5, 55, 59, 60

DSL Domain-Specific Language. 40, 69, 71, 97

EST Enhanced Syntax Tree. 21, 31, 32, 51, 55, 56, 60

FPS Frames Per Second. 66, 67

GUI Graphical User Interface. 12

IDE Integrated Development Environment. 45

JIT Just-In-Time. 71

OOP Object-Oriented Programming. 6

PL Programming Language. 2

SPA Single-Page Application. 58

UE4 Unreal Engine 4. 70

UML Unified Modeling Language. 14

VPL Visual Programming Language. 2, 13, 16–20

93



Acronyms

94



Appendix A

DVD

95



APPENDIX A.

The attached DVD contains the following directories:

dist – a runnable version of the prototype of the editor described in this thesis
as well as all associated applications; also contains source files of all the
applications

doc – electronic version of this thesis in PDF format and a presentation from
diploma seminar.

ext – Node.js installer. Node.js is required to run the server-side of the application

src – only the source files of the applications developed in Dual

A.1 Running the prototype

It is assumed that you have a modern web browser compatibile with Firefox1 47
or Chrome2 51 – these were used in developing and testing the application. The
source code is written using some ECMAScript2015 features, so it will not work
on older browsers. In order to run the version distributed with this thesis, follow
these steps:

1. If you want to run the server-side part of the application (it will work without
it):

(a) If you don’t have Node.js already, install the latest “Current” version
from the official distribution channel (https://nodejs.org), or use
your operating system’s package manager. If running 64-bit Windows,
you may also use the installer from the DVD attatched to this thesis (ext
folder). It was downloaded from https://nodejs.org/dist/v6.2.2/.

(b) Open the dist folder in the command line.

(c) By default, the server-side part of the application is configured to open
chrome as the web browser that will handle the client-side. If you want
to change that, edit the file server-options.json and change the
"browser" property to a command that will open a different browser
of your choice – e.g. "firefox". Save the file.

(d) Run the command node server.js. Before doing that you may op-
tionally update all dependencies to the latest versions by running npm
install.

(e) By default the server-side part is configured to run on 127.0.0.1 and
uses ports in the range 8079-8082, specified in the server-options.json
file. Make sure these are available. If not, you may change the defaults
again by editing the file.

1https://www.mozilla.org/firefox
2https://www.google.com/chrome/browser/desktop/

96

https://nodejs.org
https://nodejs.org/dist/v6.2.2/
 https://www.mozilla.org/firefox
https://www.google.com/chrome/browser/desktop/


APPENDIX A.

(f) The project manager view should open in your web browser. You can
change the same configuration options as in server-options.json here
(under “Options”).

(g) Click the button “open current path as project” at the bottom.

(h) See 3

2. Alternatively, if you want to just open the editor, open the editor.html file
from the dist folder.

3. A new tab should open in the browser with the editor view. You can start
using it as described in Chapter 4.

97



APPENDIX A.

98



Appendix B

Design discussion

This appendix contains some ideas that are being designed for the future versions
of the Dual programming language.

B.1 Comments

B.1.1 Built-in documentation comments

In principle multi-line comments could be implemented simply with the syntax
analyzer checking the operator of the expression being parsed, and if it is –, treating
such expression as a comment. The fact that this expression was already parsed
and transformed into a structural tree-like form could be taken advantage of while
generating documentation from comments. For example we could define a following
Domain-Specific Language1 for documentation:
--[

the below is a documentation comment
followed by the documented piece of code:

--[[
Calculates the circumference of the Circle.

override!
deprecated!

this [circle]

-- The circumference of the circle:
return [number]

--]]

define [calculate -circumference procedure [
mul[2 math.pi this.radius]

]]
]

1Inspired by [52])

99



APPENDIX B.

B.1.2 One-word comments

If multiline comments were implemented as expressions on parser-level then, in
combination with | special character we could have one-word comments, which
could be useful for describing arguments to facilitate reading of expressions. For
example we could implement list comprehensions, where:
$<-[^[x 2] x range [0 10]]
$<-[$[x y] x $[1 2 3] y $[3 1 4] <>[x y]]

would be equivalent to Python’s[129, Section 5.1.3]:
[x**2 for x in range (10)]
[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

As we see this notation is acceptable (if not cleaner) for simple comprehensions, but
starts being less readable for complex ones. This could be alleviated by introducing
one-word comments:
$<-[^[x 2] --|for x --|in range[0 10]]

$<-[$[x y] --|for x --|in $[1 2 3] --|for y --|in $[3 1 4] --|if
<>[x y]]

which are easily inserted inline with code and have a benefit of clearly separating
individual parts of an expression, because of being easily distinguished visually
from the rest. This can simulate different syntactical constructs from other pro-
gramming languages, like:
if [>[a b] --|then

log[’|greater]
--|else

log[’|lesser -or-equal]
]

Except that it is not validated by the parser. But we could imagine a separate or
extend the existing syntax analyzer, so it could validate such “keyword” comments
or even use them in some way. For example, we could add a static type checker to
the language – in a similar manner that TypeScript or Flow[83] extends JavaScript.
This would be completely transparent to the rest of the language, so any program
that uses this feature would be valid without it and it could be turned on and off
as needed.

To reduce the number of characters that have to be typed, we could decide to
use a different comment “operator”, such as %:
$<-[^[x 2] %|for x %|in range[0 10]]

$<-[$[x y] %|for x %|in $[1 2 3] %|for y %|in $[3 1 4] %|if <>[x y
]]

if [>[a b] %|then log[’|greater] %|else log[’|lesser -or-equal ]]

Or even, at the cost of complicating the parser, introduce a separate syntax for
one-word comments:

100



APPENDIX B.

-- ‘%:type ‘ could be a type annotation
bind [a 3 %: integer]
bind [b 5 %: integer]

-- will print "lesser -or-equal"
if [>[a b] %then

log[’|greater]
%else

log[’|lesser -or-equal]
]

In future versions of the language, comments will be stored separately from
whitespace in the EST. This enables easy smart indentation – only a prefix of
the relevant expression has to be looked at, no need to filter out comments. It
also enables using comments structurally, as a metalanguage for annotations, doc-
umentation, etc.

B.2 C-like syntax

Throughout this thesis I introduced multiple ways in which the basic, Lisp-like syn-
tax of Dual can be easily extended with simple enhancements, such as adding more
general-purpose special characters, macros, single-word comments (as described in
Section B.1), etc.

Going further along this path, keeping in mind that a real-world language
should appeal to its users we find ourselves introducing more and more elements
of C-like syntax. This section describes more possible ways in which the simple
syntax could be morphed to resemble the most popular languages. Ultimately all
this could be implemented with a conventional complex parser for a C-like language
that translates to bare Dual syntax.

Below I present a snapshot from one of designs I have been working on in order
to achieve some goals described in this section:
fit map" {f; lst} {

let {i; ret} [0, []];

while ((i < lst.length)) {
ret.push f(lst i);
set i" ((i + 1))

};

ret
};

This would be equivalent to:
bind [’|map of [’|f ’|lst do [

bind [’[i ret] $[0 $[]]]

while [<[i lst|length] do [
ret[push][f[lst|@[i]]]

101



APPENDIX B.

mutate [’|i +[i 1]]
]]

ret
]]]

Using the notation presented in Chapter 2.
One may observe that:

• The syntax is much richer, somewhat C-like, but with critical differences,
reflecting significantly different nature of the language. At a first glance, it
has a familiar look defined by blocks of code delimited by curly-braces, inside
which statements (actually expressions) are separated by semicolons; there
are different kinds of bracketing characters ({}()[]) with different meanings
(described below)

• Names of the primitives are full English words, although as short as pos-
sible. let introduces a variable definition – similarly to bind. fit <name>
<args> <body> is a shorthand for let <name> (of <args> <body>), where
of produces a function value. This translates to bind [<name> of [<args>
<body>]].

• {} delimit a string; inside a string words are separated by ;. Strings are stored
in raw as well as structural (syntax tree) form. They are a way of quoting
code. This provides an explicit laziness mechanism. One-word strings are
denoted with " at the end of the word, which resembles the mathematical
double prime notation.

• [] delimit list literals; inside list literals, elements are separated by ,. Lists
are a basic data structure. They are actually objects, somewhat like in
JavaScript. If a list contains at least one : character (not shown in the ex-
ample), it will be validated as key-value container; if it doesn’t, it will be
treated as array with integer-based indices

• () are used in function invocations; f(a, b, c) translates to f[a b c]; ,
separates function arguments; f x is a shorthand notation for f(x). This,
in combination with currying primitives into appropriate macros allows for
elimination of excessive brackets and separators. Invocations of primitives
resemble use of keywords from other lanugages.

• But at the same time primitives are defined as regular functions – they are no
longer treated exceptionally by the interpreter. When they are invoked, all
of their arguments are first evaluated. This works, because now it is required
that the programmer quote any words that shouldn’t be evaluated, such as
identifier names when using let. So primitives are just regular functions
operating on code, thanks to the explicit laziness provided by strings.

102



APPENDIX B.

• (()) introduce an infix expression, which respects basic operator prece-
dence: (((a + b * 2)) would translate to +[a *[b 2]]. This could be im-
plemented with a separate parser based on the shunting-yard[2] or similar
algorithm that is triggered by the (( sequence. It would translate these infix
expressions to prefix form and return them back to the original parser.

103


	Contents
	Introduction
	Scope
	Choice of subject
	Related work
	Goals
	Structure

	Background
	Web technologies
	Document Object Model
	JavaScript

	Design and implementation of Lisp
	Abstract syntax tree and program representation
	Text-based code editors
	Visual programming languages
	A note on history of VPLs
	Common criticisms of VPLs
	The problem with structure

	Screenshots

	Dual programming language
	Introduction
	Syntax and grammar
	Basic syntax

	Comments
	Numbers
	Escape character
	Strings
	Basic primitives and built-ins
	Functions
	Language primitives
	Values

	Enhanced Syntax Tree
	Structural representation of strings

	Syntax sugar for function invocations
	Pattern matching
	Destructuring
	match primitive

	Rest parameters and spread operator
	Macros
	First-class
	Just-in-time
	In combination with | and !


	Dual's development environment
	Overview
	Design goals
	Requirements
	Usability
	User interface

	Text editor
	Visual representation and its editor
	The design process

	Additional features

	Prototype implementation
	Programming discipline
	The language
	The environment
	General architecture
	Text editor

	Visual editor and representation

	Case study
	The game
	Main loop

	Performance
	Possible improvements
	Conclusion

	Comparisons to other VPLs
	VPLs: scripting languages
	MIT Scratch
	Issues

	Blueprints Visual Scripting system
	Issues

	In comparison to Dual

	Summary and conclusions
	Bibliography
	Acronyms
	DVD
	Running the prototype

	Design discussion
	Comments
	Built-in documentation comments
	One-word comments

	C-like syntax


